Preview

Informatics

Advanced search

ANALYSIS OF CELLULAR REACTION TO IFN-γ STIMULATION BY A SOFTWARE PACKAGE GeneExpressionAnalyser

Abstract

The software package GeneExpressionAnalyser for analysis of the DNA microarray experi-mental data has been developed. The algorithms of data analysis, differentially expressed genes and biological functions of the cell are described. The efficiency of the developed package is tested on the published experimental data devoted to the time-course research of the changes in the human cell un-der the influence of IFN-γ on melanoma. The developed software has a number of advantages over the existing software: it is free, has a simple and intuitive graphical interface, allows to analyze different types of DNA microarrays, contains a set of methods for complete data analysis and performs effec-tive gene annotation for a selected list of genes.

About the Authors

A. V. Saetchnikov
Белорусский государственный университет
Belarus


M. M. Yatskou
Белорусский государственный университет
Belarus


P. V. Nazarov
Центр геномных исследований
Luxembourg


L. Vallar
Центр геномных исследований
Luxembourg


V. V. Apanasovich
Белорусский государственный университет
Belarus


References

1. Свешникова, А.Н. Экспрессия генов и микрочипы: проблемы качественного анализа / А. Н. Свешникова, П.С. Иванов // Рос. хим. ж. – 2007. – Т. 51 (1). – C. 127–135.

2. Maciejewski, H. Gene set analysis methods: statistical models and methodological differ-ences / H. Maciejewski // Brief Bioinform. – 2013. – Feb. 14. – P. 1–15.

3. Assessment of gene set analysis methods based on microarray data / H.A. Majd [et al.] // Gene. – 2013. – Vol. 534. – P. 383–389.

4. SplicerEX: a tool for the automated detection and classification of mRNA changes from con-ventional and splice-sensitive microarray expression data / T.J. Robinson [et al.] // RNA. – 2012. – Vol. 18(8). – P. 1435–1445.

5. BEAT: Bioinformatics Exon Array Tool to store, analyze and visualize Affymetrix GeneChip Human Exon Array data from disease experiments / A. Consiglio [et al.] // BMC Bioinformatics. – 2012 – 13(Suppl 4): S21. – P. 1–14.

6. Bar-Joseph, Z. Studying and modelling dynamic biological processes using time-series gene expression data / Z. Bar-Joseph, A. Gitter, A. Simon // Nature Reviews Genetics. – 2012. – Vol. 13. – P. 552–564.

7. Mehta, J.P. Software and tools for microarray data analysis / J.P. Mehta, S. Rani // Methods Mol Biol. – 2011. – Vol. 784. – P. 41–53.

8. Pathway analysis software: annotation errors and solutions / N.K. Henderson-Maclennan [et al.] // Mol Genet Metab. – 2010. – Vol. 101(2–3) – P. 134–140.

9. Brian, S. E. Handbook of Statistical Analyses Using R / S.E. Brian, T.A. Hothorn. – Chap-man and Hall/CRC, 2009. – 376 p.

10. Bioconductor: open software development for computational biology and bioinformatics / R.G. Gentleman [et al.] // Genome Biology – 2004. – Feb. 14. – P. 80.1–80.16

11. Count-based differential expression analysis of RNA sequencing data using R and Biocon-ductor / S. Anders [et al.] // Nat Protoc. – 2013. – № 8(9). – P. 1765–1786.

12. BeadArray Expression Analysis Using Bioconductor / M. Dunning [et al.] // PLoSComput Biol. – 2011. – № 7(12). – P. 1–39.

13. Coral: an integrated suite of visualizations for comparing clusterings/ D. Filippova, A. Gadani, C. Kingsford // BMC Bioinformatics – 2012. – Vol. 13:276. – P. 1–13.

14. DMET-Analyzer: automatic analysis of Affymetrix DMET Data / P.N. Guzzi [et al.] // BMC Bioinformatics – 2012. – Vol. 13:258. – P. 1–10.

15. eXframe: reusable framework for storage, analysis and visualization of genomics experi-ments/ A.U. Sinha [et al.] // BMC Bioinformatics – 2011. – Vol. 12:452. – P. 1–13.

16. Next Generation Sequencing & Microarray Data Analysis Software | Partek Incorporated [Electronic resource]. – 2013. – Mode of access : http://www.partek.com. – Date of access : 15.11.2013.

17. Ingenuity IPA – Integrate and understand complex omnics data [Electronic resource]. – 2013. – Mode of access : http://www.ingenuity.com/products/ipa. – Date of access : 16.11.2013.

18. GoMiner: a resource for biological interpretation of genomic and proteomic data / B.R. Zeeberg [et al.] // Genome Biol. – 2003. – Vol. 4 (4). – Art. R28. – P. 1–8.

19. Interplay of microRNAs, transcription factors and target genes: linking dynamic expression changes to function / P.V. Nazarov [et al.] // Nucleic Acids Research. – 2013. – Vol. 41(5). – P. 2817–2831.

20. Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level Data / R.A. Irizarry [et al.] // Biostatistics. – 2003. – Vol. 4(2). – P. 249–264.

21. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation / S. Dudout [et al.] // Nucleic Acids Research. Oxford University Press. – 2002. – Vol. 30, 4 e15. – P. 1–10.

22. Comparison of Affymetrix data normalization methods using 6,926 experiments across five array generations / R. Autio [et al.] // BMC Bioinformatics. – 2009. – 10 (Suppl 1): S24. – P. 1–12.

23. Analysis of boutique arrays: A universal method for the selection of the optimal data nor-malization procedure / B. Uszczyńska [et al.] // Mol. Med. – 2013. – Sep. 32(3). – P. 668–684.

24. Bra´s, Lı´gia P. Improving cluster-based missing value estimation / Lı gia P. Br s, Jo-s C. Menezes // Biomolecular Engineering. – 2007. – Т. 24. – P. 273–282.

25. Tusher, V.G. Significance analysis of microarrays applied to the ionizing radiation response / V.G. Tusher, R. Tibshirani, G. Chu // PNAS. – 2001. – Vol. 98,9. – P. 5116–5121.

26. Speed, T. Statistical Analysis of Gene Expression Microarray Data: Clustering Microarray-Data / T. Speed // Chapman and Hall/CRC. – 2005. – 240 p.

27. Прикладная статистика: классификация и снижение размерности : справ. изд. / С.А. Айвазян [и др.]. – М. : Финансы и статистика, 1989. – 607 с.

28. The Gene Ontology [Electronic resource]. – 2013. – Mode of access : http://www.geneontology.org. – Date of access : 15.11.2013.

29. High-Throughput GoMiner, an 'industrial-strength' integrative gene ontology tool for interpre-tation of multiple-microarray experiments, with application to studies of Common Variable Immune De-ficiency (CVID) / B.R. Zeeberg [et al.] // BMC Bioinformatics. – 2005. – Vol. 6; 168. – P. 1–18.

30. Molecular Devices Launches the GenePix(R) SL50 Slide Loader and GenePix(R) Pro 7.2 Software // PR Newswire Europe Including UK Disclose [Electronic resource]. – 2011. – Mode of access : http://www.prnewswire.co.uk/news-releases/molecular-devices-launches-the-genepixr-sl50-slide-loader-and-genepixr-pro-72-software-145284555.html. – Date of access : 16.11.2013.

31. Home | Affymetrix [Electronic resource]. – 2013. – Mode of access : http://www.affymetrix.com. – Date of access : 13.11.2013.

32. Advanced spot quality analysis in two-colour microarray experiments / M. Yatskou [et al.] // BMC Research Notes. – 2008. – Vol. 1:80. – P. 1–13.

33. Dynamic regulation of microRNA expression following Interferon-γ-induced gene tran-scription / S. Reinsbach [et al.] // RNA Biology. – 2012. – Vol. 9:7. – P. 978–989.

34. Samr: SAM: Significance Analysis of Microarrays [Electronic resource]. – 2011. – Mode of access : http://cran.r-project.org/web/packages/samr/samr.pdf. – Date of access : 13.11.2013.

35. Data Mining Practical Machine Learning Tools and Techniques / Ian H. Witten [et al.]. – The Morgan Kaufmann Series in Data Management Systems, 2011. – 664 p.

36. Hyvarinen, F. Independent Component Analysis / F. Hyvarinen. – Wiley series, 2001. – 505 p.

37. Разработка метода главных компонент для анализа микрочипов ДНК / A.B. Саечни-ков // 69-я научная конф. студентов и аспирантов БГУ : тез. докл. – Минск, 2012. – C. 268–272.

38. Саечников, А.В. Программный пакет GeneExpressionAnalyser для анализа микрочи-пов ДНК / А.В. Саечников, Н.Н. Яцков, В.В. Апанасович // Медэлектроника 2012 : тез. докл. – Минск, 2012. – C. 79–81.

39. Novikov, E. An algorithm for automatic evaluation of the spot quality in two-color DNA mi-croarray experiments / E. Novikov, E. Barillot // BMC Bioinformatics. – 2005. – Vol. 6: 293. – P. 1–18.

40. Uragun, B. The discrimination of interaural level difference sensitivity functions: develop-ment of a taxonomic data template for modelling / B. Uragun, R. Rajan // BMC Neuroscience. – 2013. – Vol. 14: 144. – P. 1–19.


Review

For citations:


Saetchnikov A.V., Yatskou M.M., Nazarov P.V., Vallar L., Apanasovich V.V. ANALYSIS OF CELLULAR REACTION TO IFN-γ STIMULATION BY A SOFTWARE PACKAGE GeneExpressionAnalyser. Informatics. 2014;(2):84-97. (In Russ.)

Views: 797


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)