Preview

Informatics

Advanced search

Analytical solution of the shielding low-frequency magnetic field by thin spherical screens problem

https://doi.org/10.37661/1816-0301-2025-22-3-59-71

Abstract

O b j e c t i v e s. Construction of an analytical solution to the problem of shielding a low-frequency magnetic field by two thin non-intersecting spherical screens located on the surface of a sphere. Calculation of the shielding coefficient of the initial magnetic field by spherical screens.

M e t h o d s. The method of addition theorems and the method of triple summation equations are used to solve the boundary value problem. The potential of the initial magnetic field is represented as spherical harmonic functions. The secondary potentials of the magnetic field are represented as a superposition of spherical harmonic functions in a local coordinate system in three-dimensional space.

Re s u l t s. The solution of the boundary value problem is reduced to the solution of a system of Fredholm integral equations of the second kind with respect to specially introduced functions. The influence of the geometric parameters of the problem on the value of the screening coefficient is numerically investigated. The results of the calculations are presented in the form of graphs.

Co n c l u s i o n. The proposed methodology and the developed software can find practical application in the development and design of screens in various fields of technology.

About the Author

G. Ch. Shushkevich
Yanka Kupala State University of Grodno
Belarus

Gennady Ch. Shushkevich - D. Sc. (Phys.-Math.), Prof. of Modern Programming Technologies Department, Yanka Kupala State University of Grodno.

Ozheshko st., 22, Grodno, 230023



References

1. Shapiro D. N. Elektromagnitnoye ekranirovaniye. Electromagnetic Shielding. Dolgoprudny, Izdatel'skij dom "Intellekt", 2010, 120 p. (In Russ.).

2. Kechiev L. N. Ekranirovaniye radioelektronnoy apparatury. Inzhenernoye posobiye. Shielding of Electronic Equipment. Engineering Manual. Moscow, Grifon, 2019, 720 p. (In Russ.).

3. Dmitriev V. I., Zakharov E. V. Metod integral'nykh uravneniy v vychislitel'noy elektrodinamike. Method of Integral Equations in Computational Electrodynamics. Moscow, MAKS Press, 2008, 316 p. (In Russ.).

4. Ilyin V. P. Metody konechnykh raznostei i konechnykh ob"emov dlia ellipticheskikh uravnenii. Finite Difference and Finite Volume Methods for Elliptic Equations. Novosibirsk, Izdatel'stvo Instituta matematiki, 2000, 345 p. (In Russ.).

5. Isaev Yu. N., Vasilyeva O. V. Metody rascheta elektromagnitnykh poley. Praktika ispol'zovaniya MathCAD, COMSOL Multiphysics. Methods for the Calculation of Electromagnetic Fields. Practice Using MathCAD, COMSOL Multiphysics. Saarbruchen, LAP LAMBERT Academic Publishing, 2012, 162 р. (In Russ).

6. Pierrus J. Solved Problems in Classical Electromagnetism: Analytical and Numerical Solutions with Comments. Oxford, Oxford University Press, 2018, 638 p. DOI: 10.1093/oso/9780198821915.001.0001.

7. Uflyand Ya. S. Metod parnykh uravneniy v zadachakh matematicheskoy fiziki. Method of Paired Equations in Problems of Mathematical Physics. Moscow, Nauka, 1977, 220 p.

8. Shestopalov V. P. Summatornyye uravneniya v sovremennoy teorii difraktsii. Summation Equations in Modern Diffraction Theory. Kyiv, Naukova dumka, 1983, 252 p. (In Russ.).

9. Boridy E. Quasistatic magnetic field penetration through a circular aperture of a spherical shield enclosing a spherical conductor. Journal of Applied Physics, 1990, vol. 68, no. 2, pp. 422–430.

10. Duffy D. G. Mixed Boundary Value Problems. New York, Chapman & Hall/CRC, 2008, 488 p. DOI: 10.1201/9781420010947.

11. Shushkevich G. Ch. A technique for solving an electrostatic problem for a thin non-closed spherical shell. Elektrichestvo [Electricity], 2010, no. 6, pp. 63–68 (In Russ.).

12. Ivanov E. A. Difraktsiya elektromagnitnykh voln na dvukh telakh. Diffraction of Electromagnetic Waves on Two Bodies. Minsk, Nauka i tehnika, 1968, 584 p. (In Russ.).

13. Erofeenko V. T. The problem of electrostatics for two toroidal conductors. Zhurnal tekhnicheskoy fiziki [Journal of Technical Physics], 1986, vol. 56, no. 8, pp. 1641–1643 (In Russ.).

14. Shushkevich G. Ch. Electrostatic problem for a torus placed in an infinite cylinder. Technical Physics, 2004, vol. 49, no. 5, pp. 540–544.

15. Shushkevich G. Ch., Kuts A. I. Penetration of a low-frequency magnetic field through a flat layer with a spheroidal inclusion, thin-walled layers. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta. Ser. 2. Matematyka. Fizika. Infarmatyka, vylichal'naya tekhnika i kiravanne [Bulletin of Grodno State University. Ser. 2. Mathematics. Physics. Informatics, Computer Engineering and Management], 2012, no. 3. pp. 45–52 (In Russ.).

16. Shushkevich, G. Ch., Shushkevich S. V. Electrostatic field of a flattened ellipsoid and disc between two thin open spherical shells. Electrical Technology, 1996, no. 1, pp. 89–99.

17. Shushkevich, G. Ch. Electrostatic problem for a torus and a disk. Technical Physics, 1997, vol. 42, no. 4, рр. 436–438.

18. Shushkevich G. Ch. Modelirovanie polei v mnogosvyaznykh oblastyakh v zadachakh elektrostatiki. Modeling Fields in Multiply Connected Domains in Electrostatic Problems. Saarbruchen, LAP LAMBERT Academic Publishing, 2015, 228 р. (In Russ.).

19. Erofeenko V. T., Kozlovskaya I. S., Shushkevich G. Ch. Screening of low-frequency magnetic fields by an open thin-wall spherical shell. Technical Physics, 2010, vol. 55, no. 9, pp. 1240–1247. DOI: 10.1134/S1063784210090021.

20. Erofeenko V. T., Shushkevich G. H. Shielding of a low-frequency electric field by a multilayer circular disk. Technical Physics, 2013, vol. 58, no. 6, pp. 866–871. DOI: 10.1134/S106378421306011X.

21. Shushkevich G. Ch. Analytical solution to the problem of shielding a low-frequency magnetic field with a thin-walled cylindrical screen in the presence of a cylinder. Informatika [Informatics], 2021, vol. 18, no. 3, pp. 45–55 (In Russ.).

22. Shushkevich G. Ch. Analytical solution to the problem of shielding a low-frequency magnetic field with two thin-walled cylindrical screens. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta. Ser. 2. Matematyka. Fizika. Infarmatyka, vylichal'naya tekhnika i kiravanne [Bulletin of Grodno State University. Ser. 2. Mathematics. Physics. Informatics, Computer Engineering and Management], 2022, vol. 12, no. 1, pp. 16–24 (In Russ.).

23. Shushkevich G. Ch. Analytical solution to the problem of shielding a low-frequency magnetic field with a thin-walled cylindrical screen with an ellipsoidal inclusion. Vesnіk Grodzenskaga dzyarzhaўnaga ўnіversіteta. Ser. 2. Matematyka. Fizika. Infarmatyka, vylichal'naya tekhnika i kiravanne [Bulletin of Grodno State University. Ser. 2. Mathematics. Physics. Informatics, Computer Engineering and Management], 2024, vol. 14, no. 3, pp. 80–89 (In Russ.).

24. Apollonsky S. M. Modelirovaniye i raschet elektromagnitnykh poley v tekhnicheskikh ustroystvakh [Modeling and Calculation of Electromagnetic Fields in Technical Devices]. T. 3. Raschety elektromagnitnykh poley v nauchnykh i inzhenerno-tekhnicheskikh zadachakh [Vol. 3. Calculations of Electromagnetic Fields in Scientific and Engineering Problems]. Moscow, Rusajns, 2024, 388 p. (In Russ.).

25. Abramowitz M., Stegun I. A. (eds.). Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables. Dover Publications, 1965, 1046 p.

26. Korzyuk V. I., Shushkevich G. Ch. On the solvability of some problems in the theory of screening of fields by systems of screens. Trudy Instituta matematiki NAN Belarusi [Proceedings of the Institute of Mathematics of the NAS of Belarus], 2006, vol. 14, no. 1, pp. 71–81 (In Russ.).

27. Erofeenko V. Т. Teoremy slozheniya. Addition Theorems. Minsk, Nauka i tekhnika, 1989, 240 p. (In Russ.).

28. Verzhbitsky V. M. Osnovy chislennykh metodov. Fundamentals of Numerical Methods. Moscow, Vysshaya shkola, 2002, 848 р. (In Russ.).


Review

For citations:


Shushkevich G.Ch. Analytical solution of the shielding low-frequency magnetic field by thin spherical screens problem. Informatics. 2025;22(3):59-71. (In Russ.) https://doi.org/10.37661/1816-0301-2025-22-3-59-71

Views: 174


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)