1. Priyadarshani, N. Automated birdsong recognition in complex acoustic environments: a review / N. Priyadarshani, S. Marsland, I. Castro // Journal of Avian Biology. - 2018. - URL: https://nsojournals.onlinelibrary.wiley.com/doi/full/10.1111/jav.01447 (date of access: 19.03.2021).
2. Sharma, S. A methodological literature review of acoustic wildlife monitoring using artificial intelligence tools and techniques / S. Sharma, K. Sato, B. P. Gautam // Sustainability. - 2023. - Vol. 15, no. 9. - Р. 7128 https://doi.org/10.3390/su15097128.
3. Briggs, F. Audio classification of bird species: a statistical manifold approach / F. Briggs, R. Raich, X. Z. Fern // 2009 Ninth IEEE Intern. Conf. on Data Mining, Miami Beach, FL, USA, 6-9 Dec. 2009. - Miami Beach, 2009. - P. 51-60.
4. BirdNET: A deep learning solution for avian diversity monitoring / S. Kahl, C. M. Wood, M. Eibl, H. Klinck // Ecological Informatics. - March 2021. - Vol. 61. - Р. 101236. - https://doi.org/10.1016/j.ecoinf.2021.101236.
5. Insights and approaches using deep learning to classify wildlife / Z. Miao, K. M. Gaynor, J. Wang [et al.] // Scientific Reports. - 2019. - Vol. 9, no. 1. - URL: https://www.nature.com/articles/s41598-019-44565-w (date of access: 13.02.2021).
6. Тэхналогіі аўтаматычнай апрацоўкі і аналізу маўлення з прымяненнем штучнага інтэлекту / Ю. С. Гецэвіч, В. В. Дыдо, Д. А. Бяляўскі [і інш.] // II Форум IT-Академграда «Искусственный интеллект в Беларуси» : доклады, Минск, 12-13 окт. 2023 г. - Минск : ОИПИ НАН Беларуси, 2023. - С. 71-78.
7. Klein, D. J. Deep learning for large scale biodiversity monitoring / D. J. Klein, M. Mckown, B. Tershy // Bloomberg Data for Good Exchange Conf., N. Y., NY, USA, 28 Sept. 2015. - N. Y., 2015. - 7 р. - https://doi.org/10.13140/RG.2.1.1051.7201.
8. Artificial intelligence (BirdNET) supplements manual methods to maximize bird species richness from acoustic data sets generated from regional monitoring / L. Ware, C. L. Mahon, L. McLeod, J. F. Jetté // The Canadian Journal of Zoology. - 2023. - Vol. 101, no. 12. - P. 1031-1051.
9. Stowell, D. An open dataset for research on audio field recording archives: freefield1010 / D. Stowell, M. D. Plumbley. - 2013. - URL: https://arxiv.org/abs/1309.5275 (date of access: 06.06.2024).
10. The machine learning-powered BirdNET App reduces barriers to global bird research by enabling citizen science participation / C. M. Wood, S. Kahl, A. Rahaman, H. Klinck // PLoS Biology. - 2022. - Vol. 20, no. 6. - 10 р. - https://doi.org/10.48550/arXiv.1309.5275.
11. The Belarusian list of bird species approved by the Belarusian ornitho-faunistic commission for 2021 and 2022 / N. V. Karlionova, A. V. Borodin, I. E. Samusenko, M. Y. Nikiforov // Zoological Readings. - Grodno : GrGU, 2023. - P. 113.
12. Мадэль баз даных для тэхналогіі аўтаматызаванага распазнавання галасавых сігналаў жывѐл / С. А. Гайдураў, Д. І. Латышэвіч, А. А. Бакуновіч [і інш.] // Развитие информатизации и государственной системы научно-технической информации (РИНТИ-2022) : докл. ХXI Междунар. науч.-техн. конф., Минск, 17 нояб. 2022 г. - Минск : ОИПИ НАН Беларуси, 2022. - С. 236-240.
13. Stowell, D. Computational bioacoustics with deep learning: a review and roadmap / D. Stowel // PeerJ. - 2022. - Vol. 10 - P. 46.
14. FSD50K: an open dataset of human-labeled sound events / E. Fonseca, X. Favory, J. Pons [et al.] // ACM Transactions on Audio, Speech, and Language Processing. - 2022. - Vol. 30 - P. 829-852.
15. Hearing to the unseen: audiomoth and BirdNET as a cheap and easy method for monitoring cryptic bird species / G. Bota, R. Manzano-Rubio, L. Catalán [et al.] // Sensors. - 2023. - Vol. 23, no. 16. - 11 р. - https://doi.org/10.3390/s23167176.
16. Tan, M. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks / M. Tan, Q. V. Le // Proc. of the 36th Intern. Conf. on Machine Learning, ICML 2019, Long Beach, 9-15 June 2019. - Long Beach, 2019. - Р. 6105-6114.
17. Multi-class imbalanced data classification: a systematic mapping study / Y. Wang, M. M. Rosli, N. Musa, F. Li // Engineering, Technology & Applied Science Research. - 2024. - Vol. 14. - P. 14183-14190. - https://doi.org/10.48084/etasr.7206.
18. Mao, J.-X. Learning label-specific multiple local metrics for multi-label classification / J.-X. Mao, J.-Y. Hang, M.-L. Zhang // Thirty-Third Intern. Joint Conf. on Artificial Intelligence {IJCAI-24}, Jeju, Korea, 3-9 Aug. 2024. - Jeju, 2024. - P. 4742-4750. - https://doi.org/10.24963/ijcai.2024/524.
19. Jia, B.-B. Towards exploiting linear regression for multi-class/multi-label classification: an empirical analysis / B.-B. Jia, J.-Y. Liu, M.-L. Zhang // International Journal of Machine Learning and Cybernetics. - March 2024. - Vol. 15. - P. 3671-3700. - https://doi.org/10.1007/s13042-024-02114-6.
20. Developing birds sound recognition system using an ontological approach / Ya. Zianouka, D. Bialiauski, L. Kajharodava [et al.] // Open Semantic Technologies for Intelligent Systems. - Minsk, Belarusian State University of Informatics and Radioelectronics, 2023. - Iss. 7. - P. 165-170.