1. Mustafa K. A. A., Botteghi N., Sirmacek B., Poel M., Stramigioli S. Towards continuous control for mobile robot navigation: A reinforcement learning and slam based approach. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2019, vol. 42, rr. 857-863. https://doi.org/10.5194/isprs-archives-XLII-2-W13-857-2019
2. Truong, X. T., Ngo T. D. Toward socially aware robot navigation in dynamic and crowded environments: A proactive social motion model. IEEE Transactions on Automation Science and Engineering, 2017, vol. 14, no. 4, rr. 1743-1760. https://doi.org/10.1109/TASE.2017.2731371
3. Mhin V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., …, Riedmiller M. Playing Atari with Deep Reinforcement Learning, 2013. Available at: https://doi.org/10.48550/arXiv.1312.5602 (accessed 20.06.2024).
4. Silver D., Huang A., Maddison C. J., Guez A., Sifre L., …, Ha abi D. Mastering the game of Go with deep neural networks and tree search. Nature, 2016, vol. 529, no. 7587, rr. 484-489.
5. Andrychowicz M., Baker B., Chociej M., Józefowicz R., McGrew B., …, Zaremba W. Learning dexterous in-hand manipulation. The International Journal of Robotics Research, 2020, vol. 39, no. 1, rr. 3-20. https://doi.org/10.1177/0278364919887447
6. Heess N., Dhruva T. B., Sriram S., Lemmon J., Merel J., …, Silver D. Emergence of Locomotion Behaviours in Rich Environments, 2017. Available at: https://doi.org/10.48550/arXiv.1707.02286 (accessed 20.06.2024).
7. Brummelen J. V., O'Brien M., Gruyer D., Najjaran H. Autonomous vehicle perception: The technology of today and tomorrow. Transportation Research Part C: Emerging Technologies, 2018, no. 86, rr. 384-406. https://doi.org/10.1016/j.trc.2018.02.012
8. Huang W., Braghin F., Wang Z. Learning to drive via Apprenticeship Learning and Deep Reinforcement Learning, 2020, rr. 1-7. Available at: https://doi.org/10.48550/arXiv.2001.03864 (accessed 20.06.2024).
9. Nageshrao S., Rahman Y., Ivanovic V., Jankovic M., T eng E., …, Filev D. Robu t AI driving trategy for autonomous vehicles. AI-enabled Technologies for Autonomous and Connected Vehicles. Springer, 2022, rr. 161-212.
10. Yeong D. J., Velasco-Hernandez G., Barry J., Walsh J. Sensor and sensor fusion technology in autonomous vehicles: A review. Sensors, 2021, vol. 21, iss. 6, r. 2140. https://doi.org/10.3390/s21062140
11. Kweon J., Kim K., Lee Ch. Deep reinforcement learning for guidewire navigation in coronary artery phantom. IEEE Access, 2021, vol. 9, rr. 166409-166422. https://doi.org/10.1109/ACCESS.2021.3135277
12. Osa T., Pajarinen J., Neumann G., Bagnell J. A., Abbeel P., Peters J. An Algorithmic Perspective on Imitation Learning. Bo ton, Now publishers Inc., 2018, 188 p.
13. Lonza, A. Reinforcement Learning Algorithms with Python. Packt Publishing, 2019, 366 r.
14. Chella, A imitation learning and anchoring through conceptual spaces. Applied Artificial Intelligence, 2007, no. 21, rr. 343-359.
15. Kim T., Prakapovich R. Automatic tuning of the motion control system of a mobile robot along a trajectory based on the reinforcement learning method. Communications in Computer and Information Science. Springer, Cham, 2022, vol. 1562, rr. 234-244. https://doi.org/10.1007/978-3-030-98883-8_17
16. Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction, 2nd edition. London, England, The MIT Press, 2014, 352 r.
17. Watkin C., Dayan P. Q-learning. Machine Learning, 1992, vol. 8, i . 3-4, rr. 279-292.
18. Duan J. M., Chen Q. L. Prior knowledge ba ed Q-learning path planning algorithm. Electronics Optics & Control, 2019, vol. 26, i . 9, rr. 29-33.
19. Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction, 2nd edition. London, England, The MIT Pre , 2014, 338 r.
20. Rossi F., Nardelli M., Cardellini V. Horizontal and vertical scaling of container-based applications using reinforcement learning. 2019 IEEE 12th International Conference on Cloud Computing (CLOUD), Milan, Italy, 8-13 July 2019. Milan, 2019, rr. 329-338. https://doi.org/10.1109/CLOUD.2019.00061
21. Strehl A. L., Li L., Wiewiora E., Langford J., Littman M. L. PAC model-free reinforcement learning. ICML’06: Proceeding of the 23th International Conference on Machine Learning. Pittsburgh, Pennsylvania, USA, 25-29 June 2006. Pittsburgh, 2006, rr. 881-888. https://doi.org/10.1145/1143844.114395
22. Ravichandiran S. Deep Reinforcement Learning with Python, 2nd edition. Packt Publishing, 2020, 760 p.
23. Yu Ch., Ren G. Supervised-actor-critic reinforcement learning for intelligent mechanical ventilation and sedative dosing in intensive care units. BMC Medical Informatics and Decision Making, 2020, no. 20 (S3), rr. 1-8. https://doi.org/10.1186/s12911-020-1120-5
24. Zheng B., Verma S., Zhou J., Tsang I., Chen F. Imitation learning: progress, taxonomies and challenges. IEEE Transactions on Neural Networks and Learning Systems, 2022, rr. 1-22. Available at: https://arxiv.org/abs/2106.12177 (accessed 20.06.2024).
25. Kim T. Yu., Prakapovich R. A. Lobatiy A. A. Forced motion control of a mobile robot. Informatika [Informatics], 2022, vol. 19, no. 3, pp. 86−100 (In Russ.). https://doi.org/10.37661/1816-0301-2022-19-3-86-100