Preview

Информатика

Расширенный поиск

Интерактивная сегментация изображений на основе их кластеризации

https://doi.org/10.37661/1816-0301-2024-21-2-86-93

Аннотация

Цели. Рассматривается задача сегментации цветных изображений без использования предварительного обучения. Она возникает, например, когда необходимо выполнить сегментацию изображений с неизвестными заранее семантическими и цветовыми свойствами непосредственно после их получения или когда набор изображений, предназначенных для сегментации, слишком мал, а также при выполнении предварительного «разведочного» анализа изображений. В таких случаях невозможно использование мощных нейросетевых и других средств сегментации, требующих глубокого обучения.
Методы. Предлагается алгоритм интерактивной сегментации изображений, основанный на анализе цветов областей, выделенных в интерактивном режиме. Вначале в интерактивном режиме выделяются весьма приближенно области изображения, принадлежащие объектам, а затем – принадлежащие фону. На следующем шаге множество цветов выделенных областей объектов и множество цветов выделенных областей фона кластеризуются по отдельности одним из алгоритмов кластеризации, например k-сред- них, нечетких c-средних, или предложенным автором алгоритмом многоуровневой кластеризации. После этого из множества центров кластеров, описывающих объект, и множества кластеров, описывающих фон, удаляются неинформативные элементы. Преобразованные множества центров кластеров объектов и  фона используются для сегментации изображения.
Результаты. Построенный алгоритм позволяет выделить на цветном изображении требуемые объекты в случае, когда их цвет отличается от цвета фона. Интерактивное выделение областей объектов и областей фона не требует аккуратности и больших усилий и обычно занимает от нескольких десятков секунд до минуты. Для выделения достаточно использовать прямоугольные области, лежащие целиком внутри изображений объектов, и прямоугольные области, лежащие целиком внутри фона. Приводятся пример интерактивного выделения областей и результаты сегментирования цветных изображений.
Заключение. Проведенные эксперименты показали эффективность предложенного подхода сегментирования цветных изображений. Его можно применять в случаях, когда заранее неизвестны семантические и цветовые свойства изображений, и в случаях, когда использование более мощных методов глубокого обучения, включая нейронные сети, слишком затратно или невозможно.

Для цитирования:


Залесский Б.А. Интерактивная сегментация изображений на основе их кластеризации. Информатика. 2024;21(2):86-93. https://doi.org/10.37661/1816-0301-2024-21-2-86-93

For citation:


Zalesky B.A. Clustering-based interactive image segmentation. Informatics. 2024;21(2):86-93. (In Russ.) https://doi.org/10.37661/1816-0301-2024-21-2-86-93

Просмотров: 255


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)