1. Stevens S. S. On the theory of scales of measurement. Science, 1946, vol. 103, no. 2684, рр. 677-680.
2. Agresti A. Modelling ordered categorical data: recent advances and future challenges. Statistics in Medicine, 1999, vol. 18, no. 17-18, рр. 2191-2207.
3. McCullagh P. Regression models for ordinal data. Journal of the Royal Statistical Society: Series B (Methodological), 1980, vol. 42, no. 2, рр. 109-127.
4. Agresti A. Analysis of Ordinal Categorical Data, 2nd edition. John Wiley & Sons, 2010, 424 р.
5. McCullagh P. Proportional odds model: Theoretical background. Wiley StatsRef: Statistics Reference Online, 2014. Available at: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat05796 (accessed 27.02.2024).
6. Thompson Jr W. A. On the treatment of grouped observations in life studies. Biometrics, 1977, vol. 33, no. 3, рр. 463-470.
7. Cox D. R. Regression models and life‐tables. Journal of the Royal Statistical Society: Series B (Methodological), 1972, vol. 34, no. 2, рр. 187-202.
8. McCullagh P. Regression models for ordinal data. Journal of the Royal Statistical Society: Series B (Methodological), 1980, vol. 42, no. 2, рр. 109-127.
9. Fienberg S. E. The Analysis of Cross-Classified Categorical Data, 2nd edition. Springer Science & Business Media, 2007, 212 р.
10. Powers D., Xie Y. Statistical Methods for Categorical Data Analysis, 2nd edition. Emerald Group Publishing, 2008, 296 р.
11. Fullerton A. S., Xu J. Constrained and unconstrained partial adjacent category logit models for ordinal response variables. Sociological Methods & Research, 2018, vol. 47, no. 2, рр. 169-206.
12. Anderson J. A. Regression and ordered categorical variables. Journal of the Royal Statistical Society: Series B (Methodological), 1984, vol. 46, no. 1, рр. 1-22.
13. Fernandez D., Liu I., Costilla R. A method for ordinal outcomes: The ordered stereotype model. International Journal of Methods in Psychiatric Research, 2019, vol. 28, no. 4, р. e1801.
14. Long J. S., Cheng S. Regression models for categorical outcomes. Handbook of Data Analysis, 2004, рр. 259-284.
15. Hilbe J. M. Logistic Regression Models, 1st edition. CRC press, 2009, 656 р.
16. Hauser R. M., Andrew M. 1. Another look at the stratification of educational transitions: the logistic response model with partial proportionality constraints. Sociological Methodology, 2006, vol. 36, no. 1, рр. 1-26.
17. Tutz G. Ordinal regression: A review arn a taxoromy of models. Wiley Interdisciplinary Reviews: Computational Statistics, 2022, vol. 14, no. 2, р. e1545.
18. Hosmer D. W., Lemeshow S., Cook E. Applied Logistic Regression, 2nd edition. New York, John Wiley and Sons Inc., 2000, 376 р.
19. Lipsitz S. R., Fitzmaurice G. M., Molenberghs G. Goodness-of-fit tests for ordinal response regression models. Journal of the Royal Statistical Society Series C: Applied Statistics, 1996, vol. 45, no. 2, рр. 175-190.
20. Pulkstenis E., Robinson T. J. Goodness‐of‐fit tests for ordinal response regression models. Statistics in Medicine, 2004, vol. 23, no. 6, рр. 999-1014.
21. Fagerland M. W., Hosmer D. W. Tests for goodness of fit in ordinal logistic regression models. Journal of Statistical Computation and Simulation, 2016, vol. 86, no. 17, рр. 3398-3418.
22. Tharwat A. Classification assessment methods. Applied Computing and Informatics, 2020, vol. 17, no. 1, рр. 168-192.
23. Japanese Gastric Cancer Association. Japanese Gastric Cancer Treatment Guidelines 2021. Gastric Cancer: Official Journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association, 2023, vol. 26, no. 1, рр. 1-25.
24. Götze T. O., Piso P., Lorenzen S., Bankstahl U. S., Pauligk C., …, Königsrainer A. Preventive HIPEC in combination with perioperative FLOT versus FLOT alone for resectable diffuse type gastric and gastroesophageal junction type II/III adenocarcinoma - the phase III "PREVENT"-(FLOT9) trial of the AIO/CAOGI/ACO. BMC Cancer, 2021, vol. 21, no. 1, рр. 1-9.
25. Cohen J. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 1960, vol. 20, no. 1, рр. 37-46.
26. Lin M., Chen Q.-Y., Zheng C.-H., Li P., Xie J.-W., …, Huang C.-M. Effect of preoperative tumor under-staging on the long-term survival of patients undergoing radical gastrectomy for gastric cancer. Cancer Research and Treatment: Official Journal of Korean Cancer Association, 2021, vol. 53, no. 4, рр. 1123-1133.
27. Mcfadden D. Conditional logit analysis of qualitative choice behavior. Frontier in Econometrics, New York, Academic press, 1973, рр. 105-142.
28. Rosa F., Costamagna G., Doglietto G. B., Alfieri S. Classification of nodal stations in gastric cancer. Translational Gastroenterology and Hepatology, 2017, vol. 2. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5313280/pdf/tgh-02-2016.12.03.pdf (accessed 27.02.2024).
29. Deng J., Zhang R., Pan Y., Ding X., Cai M., …, Liang H. Tumor size as a recommendable variable for accuracy of the prognostic prediction of gastric cancer: a retrospective analysis of 1,521 patients. Annals of Surgical Oncology, 2015, vol. 22, рр. 565-572.
30. Dai N., Lu A.-P., Shou C.-C., Li J.-Y. Expression of phosphatase regenerating liver 3 is an independent prognostic indicator for gastric cancer. World Journal of Gastroenterology, 2009, vol. 15, no. 12, рр. 1499-1505.
31. Kim E. Y. Lee J. W., Yoo H. M., Park C. H., Song K. Y. The platelet-to-lymphocyte ratio versus neutrophil-to-lymphocyte ratio: which is better as a prognostic factor in gastric cancer? Annals of Surgical Oncology, 2015, vol. 22, рр. 4363-4370.