1. Alonzo T. A. Clinical prediction models: a practical approach to development, validation, and updating: by Ewout W. Steyerberg. - 2009.]
2. O'Mahony C. et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD) //European heart journal. - 2014. - T. 35. - №. 30. - S. 2010-2020]
3. Scrucca L., Santucci A., Aversa F. Competing risk analysis using R: an easy guide for clinicians //Bone marrow transplantation. - 2007. - T. 40. - №. 4. - S. 381-387.
4. Wolbers M. et al. Prognostic models with competing risks: methods and application to coronary risk prediction //Epidemiology. - 2009. - S. 555-561.
5. Cox D. R. Regression models and life‐tables //Journal of the Royal Statistical Society: Series B (Methodological). - 1972. - T. 34. - №. 2. - S. 187-202.
6. Hosmer Jr D. W., Lemeshow S., May S. Applied survival analysis: regression modeling of time-to-event data. - John Wiley & Sons, 2011. - T. 618.
7. Therneau T., Crowson C., Atkinson E. Using time dependent covariates and time dependent coefficients in the cox model //Survival Vignettes. - 2017. - T. 2. - №. 3. - S. 1-25.
8. Murphy S. A., Sen P. K. Time-dependent coefficients in a Cox-type regression model //Stochastic Processes and their Applications. - 1991. - T. 39. - №. 1. - S. 153-180.
9. Thomas L., Reyes E. M. Tutorial: survival estimation for Cox regression models with time-varying coefficients using SAS and R //Journal of Statistical Software. - 2014. - T. 61. - S. 1-23.
10. Redmond C., Fisher B., Wieand H. S. The methodologic dilemma in retrospectively correlating the amount of chemotherapy received in adjuvant therapy protocols with disease-free survival //Cancer Treatment Reports. - 1983. - T. 67. - №. 6. - S. 519-526.
11. Suissa S. Immortal time bias in pharmacoepidemiology //American journal of epidemiology. - 2008. - T. 167. - №. 4. - S. 492-499.
12. Fine J. P., Gray R. J. A proportional hazards model for the subdistribution of a competing risk //Journal of the American statistical association. - 1999. - T. 94. - №. 446. - S. 496-509.
13. Li J., Scheike T. H., Zhang M. J. Checking Fine and Gray subdistribution hazards model with cumulative sums of residuals //Lifetime data analysis. - 2015. - T. 21. - №. 2. - S. 197-217.
14. Agnes A. et al. A detailed analysis of the recurrence timing and pattern after curative surgery in patients undergoing neoadjuvant therapy or upfront surgery for gastric cancer //Journal of Surgical Oncology. - 2020. - T. 122. - №. 2. - S. 293-305.
15. Seyfried F. et al. Incidence, time course and independent risk factors for metachronous peritoneal carcinomatosis of gastric origin-a longitudinal experience from a prospectively collected database of 1108 patients //BMC cancer. - 2015. - T. 15. - S. 1-10.
16. Lee J. H. et al. Lauren histologic type is the most important factor associated with pattern of recurrence following resection of gastric adenocarcinoma //Annals of surgery. - 2018. - T. 267. - №. 1. - S. 105.
17. Reutovich M.Y, Krasko O.V, Sukonko O.G. Hyperthermic intraperitoneal chemotherapy in prevention of gastric cancer metachronous peritoneal metastases: a systematic review. J Gastrointest Oncol 2021;12(Suppl 1):S5-S17. https://doi.org/10.21037/jgo-20-129.
18. Chen X. et al. Analysis and external validation of a nomogram to predict peritoneal dissemination in gastric cancer //Chinese Journal of Cancer Research. - 2020. - T. 32. - №. 2. - S. 197-207.
19. Dromain C. et al. Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT //Abdominal imaging. - 2008. - T. 33. - S. 87-93.
20. Kawanaka Y. et al. Added value of pretreatment 18F-FDG PET/CT for staging of advanced gastric cancer: comparison with contrast-enhanced MDCT //European journal of radiology. - 2016. - T. 85. - №. 5. - S. 989-995.
21. Wu F. et al. Peritoneal recurrence in gastric cancer following curative resection can be predicted by postoperative but not preoperative biomarkers: a single-institution study of 320 cases //Oncotarget. - 2017. - T. 8. - №. 44. - S. 78120.
22. Locally advanced gastric cancer: modern directions of radical treatment and prediction of long-term results: monograph / Reutovich M.Yu., Krasko O.V.. - Minsk: Belarusian Medical Academy of Postgraduate Education, 2022. - 217 p.
23. Results of radical treatment of infiltrative gastric cancer using perfusion thermochemotherapy / Reutovich M.Yu., Krasko O.V., Malkevich V.T., Patseika A.I. // Eurasian Journal of Oncology. - 2022, - Vol. 10, №2, - P. 107-117.
24. Reutovich M.Yu., Krasko O.V. Intraoperative risk assessment of carcinomatosis development after radical surgery for gastric cancer// Oncology and Radiology of Kazakhstan, N2 (56) 2020. https://doi.org/10.52532/2521-6414-2020-2-56-26-30.
25. Reutovich M., Krasko O. Prophylactic hyperthermic intraperitoneal chemotherapy in gastric cancer management: short- and long-term outcomes of a prospective randomized study // Oncology in clinical practice . 2021, Vol. 17, № 5, - p. 187-193. https://doi.org/10.5603/OCP.2021.0028.
26. M. Yu Reutovich, O.V.Krasko, O.G.Sukonko: Efficacy of Adjuvant Systemic Chemotherapy Combined with Radical Surgery and Hyperthermic Intraperitoneal Chemotherapy in Gastric Cancer Treatment // Indian Journal of Surgical Oncology. 2020. -Vol. 11. P. 337-343. https://doi.org/10.1007/s13193-020-01102-w.
27. Algoritmy diagnostiki i lecheniya zlokachestvennykh novoobrazovanii: klinicheskii protokol: utv. Postanovleniem M-va zdravookhraneniya Resp. Belarus' № 60 ot 06.07.2018 g. / pod red. O. G. Sukonko, S. A. Krasnogo. - Minsk: Professional'nye izdaniya, 2019. - S. 97-110.
28. Schoenfeld D. Partial residuals for the proportional hazards regression model //Biometrika. - 1982. - T. 69. - №. 1. - S. 239-241.
29. Harrell F. E. et al. Regression modeling strategies: with applications to linear models, logistic regression, and survival analysis. - New York : Springer, 2001. - T. 608.
30. Heagerty P. J., Lumley T., Pepe M. S. Time‐dependent ROC curves for censored survival data and a diagnostic marker //Biometrics. - 2000. - T. 56. - №. 2. - S. 337-344.
31. Steyerberg E. W. A practical approach to development, validation, and updating //Clinical Prediction Models. - 2009.
32. Vickers A. J., Elkin E. B. Decision curve analysis: a novel method for evaluating prediction models //Medical Decision Making. - 2006. - T. 26. - №. 6. - S. 565-574.
33. Vickers A. J., Van Calster B., Steyerberg E. W. Net benefit approaches to the evaluation of prediction models, molecular markers, and diagnostic tests //bmj. - 2016. - T. 352.
34. Vickers A. J. et al. Extensions to decision curve analysis, a novel method for evaluating diagnostic tests, prediction models and molecular markers //BMC medical informatics and decision making. - 2008. - T. 8. - S. 1-17.