Классификация займа с использованием нейронной сети прямого распространения
https://doi.org/10.37661/1816-0301-2024-21-1-83-104
Аннотация
Цели. Целью исследования являются построение и изучение использования нейронной сети прямого распространения для решения задачи классификации займа, а также проведение сравнительного анализа подхода на основе нейронной сети с существующим подходом, основанным на логистической регрессии.
Метод. На базе нейронной сети прямого распространения с использованием исторических данных по выданным займам вычисляются следующие метрики: стоимостная функция, Accuracy, Precision, Recall и мера, рассчитанная на основе значений Precision и Recall. Полиномиальные параметры и метод главных компонент применяются для определения оптимального модифицированного набора входных данных для исследуемой нейронной сети.
Результаты. Проанализировано воздействие нормализации исходных данных на конечный результат, оценено влияние количества элементов скрытого уровня на конечный результат при помощи двухэтапного метода и метода Монте-Карло, определено воздействие использования сбалансированных данных, рассчитано оптимальное граничное значение для выходного уровня рассматриваемой нейронной сети, найдена оптимальная функция активации для элементов скрытого уровня, изучено влияние увеличения количества входных показателей путем заполнения отсутствующих значений и использования полиномов разной степени, а также проанализирован на избыточность имеющийся набор входных показателей.
Заключение. По итогам исследования можно сделать вывод, что применение сети прямого распространения для решения задач классификации займа является целесообразным. В сравнении с логистической регрессией реализация решения с использованием нейронной сети прямого распространения требует больше времени и вычислительных ресурсов. Однако полученные наиболее важные значения Accuracy и меры выше, чем те, которые были рассчитаны с применением логистической регрессии [1].
Для цитирования:
Бегунков В.И. Классификация займа с использованием нейронной сети прямого распространения. Информатика. 2024;21(1):83-104. https://doi.org/10.37661/1816-0301-2024-21-1-83-104
For citation:
Behunkou U.I. Loan classification using a feed-forward neural network. Informatics. 2024;21(1):83-104. (In Russ.) https://doi.org/10.37661/1816-0301-2024-21-1-83-104