Semantic models and tools for the development of artificial neural networks and their integration into knowledge bases
https://doi.org/10.37661/1816-0301-2023-20-3-90-105
Abstract
Objectives. Specifications of models and tools for the development of artificial neural networks (ANNs) and their integration into knowledge bases (KBs) of intelligent systems are being developed. The relevance is determined by the necessity of implementing the possibility to solve complex problems by intelligent systems, which algorithms and methods of solving are not available in the knowledge base of the intelligent system.
Methods. Four levels of integration of artificial neural networks into knowledge bases are formulated and analyzed. During the analysis the requirements and specifications for required models and tools for the development and integration are formulated. Specified at each level the models and tools include the models and tools of previous level. The application of the tools is considered by the example of solving the problem of classifying the knowledge base entities using a graph neural network.
Results. The specifications of the ANN representation model in the knowledge base, the agent-based model for the development and interpretation of the ANN, which ensures the integration of the ANN into knowledge bases at all selected levels, as well as the method for classifying knowledge base entities using a graph neural network, have been developed.
Conclusion. The developed models and tools allow integrating any trained ANNs into the knowledge base of the intelligent system and using them to solve complex problems within the framework of OSTIS technology. It also becomes possible to design and train ANNs both on the basis of external data and on the basis of fragments of the knowledge base. Automation of ANNs development process in the knowledge base becomes available.
About the Author
M. V. KovalevBelarus
Mikhail V. Kovalev - Researcher of Technical Sciences, the Department of Intelligent Information Technologies, Belarusian State University of Informatics and Radioelectronics.
Brovki P. st., 6, Minsk, 220013
References
1. Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L., ..., Polosukhin I. Attention Is All You Need, 2017. Available at: https://doi.org/10.48550/arXiv.1706.03762 (accessed 17.06.2023).
2. Ouyang L., Wu J., Jiang X., Almeida D., Wainwright C. L., Lowe R. J. Training Language Models to Follow Instructions with Human Feedback, 2022. Available at: https://doi.org/10.48550/arXiv.2203.02155 (accessed 17.06.2023).
3. Radford A., Metz L., Chintala S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, 2016. Available at: https://doi.org/10.48550/arXiv.1511.06434 (accessed 17.06.2023).
4. Kejriwal M. Knowledge graphs: A practical review of the research landscape. Applied Sciences, 2022, vol. 13(4), no. 161. Available at: https://doi.org/10.3390/info13040161 (accessed 17.06.2023).
5. Tsamoura E., Hospedales T., Michael L. Neural-symbolic integration: a compositional perspective. Proceedings of the AAAI Conference on Artificial Intelligence, held virtually, 2-9 February 2021. Vol. 35, no. 6, рр. 5051-5060. https://doi.org/10.1609/aaai.v35i6.16639
6. Yu S., Xu C., Bai X., Bai X., Kuncheerathodi R., ., Xia F. Deep Learning Meets Knowledge Graphs: A Comprehensive Survey, 2022. Available at: https://doi.org/10.21203/rs.3.rs-2021923/v1 (accessed 17.06.2023).
7. Golenkov V. V., Gulyakina N. A. Next-generation intelligent computer systems and technology of complex support of their life cycle. Otkrytye semanticheskie tehnologii proektirovanija intellektual'nyh system : sbornik nauchnyh trudov [Open Semantic Technologies for Designing Intelligent Systems (OSTIS-2022) : Research Papers Collection]. Ed. board: V. V. Golenkov, I. S. Azarov, V. A. Golovko, A. N. Gordey, N. A. Guliakina, ., D. V. Shunkevich. Minsk, Belorusskij gosudarstvennyj universitet informatiki i radiojelektroniki, 2022, iss. 6, pp. 27-40.
8. Stokel-Walker C. AI chatbots are coming to search engines - can you trust the results? Nature, 2023. Available at: https://www.nature.com/articles/d41586-023-00423-4 (accessed 17.06.2023).
9. Hoy M. B. Alexa, Siri, Cortana, and more: An introduction to voice assistants. Medical Reference Services Quarterly, 2018, vol. 37, no. 1, рр. 81-88.
10. Wiley V., Lucas T. Computer vision and image processing: A paper review. International Journal of Artificial Intelligence Research, 2018, vol. 2, no. 1, рр. 28-36. https://doi.org/10.29099/ijair.v2i1.42
11. Hur A., Janjua N., Ahmed M. A survey on state-of-the-art techniques for knowledge graphs construction and challenges ahead. IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE), Laguna Hills, 1-3 December 2021. Laguna Hills, 2021, рр. 99-103. https://doi.org/10.1109/AIKE52691.2021.00021
12. Kroshchanka A., Golovko V., Mikhno E., Kovalev M., ., Zagorskij A. A neural-symbolic approach to computer vision. Communications in Computer and Information Science : Proceedings of the 11th International Conference "Open Semantic Technologies for Intelligent Systems" (OSTIS-2021), Minsk, 16-18 September 2021. Cham, Springer, 2022, vol. 1625, рр. 282-309. https://doi.org/10.1007/978-3-031-15882-7_15
13. Golovko V., Golenkov V., Ivashenko V., Taberko V., Ivaniuk D., ., Kovalev M. Integration of artificial neural networks with knowledge bases. Ontologija proektirovanija [Design Ontology], 2018, vol. 8, no. 3(29), pp. 366-386. https://doi.org/10.18287/2223-9537-2018-8-3-366-386 (In Russ.).
14. Nielsen F. A., Hansen, L. K. Inferring visual semantic similarity with deep learning and Wikidata: Introducing. CEUR Workshop Proceedings : Proceedings of the First Workshop on "Deep Learning for Knowledge Graphs and Semantic Technologies" (DL4KGS) co-located with the 15th "Extended Semantic Web Conference" (ESWC 2018), Heraklion, 4 June 2018. Heraklion, 2018, vol. 2106, рр. 56-61.
15. Schlichtkrull M., Kipf T. N., Bloem P., van den Berg R., Titov I., Welling M. Modeling relational data with graph convolutional networks. Lecture Notes in Computer Science : Proceedings of the 15th International Conference "European Semantic Web Conference" (ESWC 2018), Heraklion, 3-7 June 2018. Cham, Springer, 2018, vol. 10843, рр. 593-607. https://doi.org/10.1007/978-3-319-93417-4_38
16. Molinas C., Teresa L. Clustering knowledge graphs. Seminar Paper, 2018, рр. 1-12. Available at: https://doi.org/10.13140/RG.2.2.12494.08008 (accessed 17.06.2023).
17. Saranya A., Subhashini R. A systematic review of explainable artificial intelligence models and applications: Recent developments and future trends. Decision Analytics Journal, 2023, vol. 7, pp. 100-230. https://doi.org/10.1016/j.dajour.2023.100230
18. Averkin A., Yarushev S. Explainable artificial intelligence: rules extraction from neural networks. Proceedings of the 11th International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions and Artificial Intelligence (ICSCCW-2021), Antgalya, 26-27 August 2021. Antgalya, 2021, vol. 362, рр. 102-109. https://doi.org/10.1007/978-3-030-92127-9_17
19. Castelvecchi D. Can we open the black box of AI? Nature, 2016, vol. 538, no. 7623, рр. 20-23.
20. Chomsky N., Roberts I., Watumull J. The False Promise of ChatGPT. Available at: https://www.nytimes.com/2023/03/08/opinion/noam-chomsky-chatgpt-ai.html (accessed 17.06.2023).
21. Tehnologija kompleksnoj podderzhki zhiznennogo cikla semanticheski sovmestimyh intellektual'nyh komp'juternyh sistem novogo pokolenija. Technology for Comprehensive Life Cycle Support of Semantically Compatible, Next-generation Intelligent Computer Systems. In V. V. Golenkov (ed.). Minsk, Bestprint, 2023, chap. 3.6, 1064 p. (In Russ.).
22. Kovalev M., Kroshchanka A., Golovko V. Convergence and integration of artificial neural networks with knowledge bases in next-generation intelligent computer systems. Otkrytye semanticheskie tehnologii proektirovanija intellektual'nyh system : sbornik nauchnyh trudov [Open Semantic Technologies for Designing Intelligent Systems (OSTIS-2022) : Research Papers Collection]. Ed. board: V. V. Golenkov, I. S. Azarov, V. A. Golovko, A. N. Gordey, N. A. Guliakina, D. V. Shunkevich. Minsk, Belorusskij gosudarstvennyj universitet informatiki i radiojelektroniki, 2022, iss. 6, pp. 173-186.
23. Riaz M., Shen Y., Sohail M., Guo M. eXnet: an efficient approach for emotion recognition in the wild. Sensors, 2020, Vol. 20(4), no. 1087, рр. 1-17. https://doi.org/10.3390/s20041087
24. Bantsevich K., Kovalev M., Tsishchanka V., Malinovskaya N., Andrushevich A. Integration of large language models with knowledge bases of intelligent systems. Otkrytye semanticheskie tehnologii proektirovanija intellektual'nyh system : sbornik nauchnyh trudov [Open Semantic Technologies for Designing Intelligent Systems (OSTIS-2023) : Research Papers Collection]. Ed. board: V. V. Golenkov, I. S. Azarov, V. A. Golovko, A. N. Gordey, N. A. Guliakina, D. V. Shunkevich. Minsk, Belorusskij gosudarstvennyj universitet informatiki i radiojelektroniki, 2023, iss. 7, pp. 213-218.
25. Xinyi Z., Chen L. Capsule graph neural network. International Conference on Learning Representations, 2019. Available at: https://openreview.net/forum?id=Byl8BnRcYm (accessed 17.06.2023).
Review
For citations:
Kovalev M.V. Semantic models and tools for the development of artificial neural networks and their integration into knowledge bases. Informatics. 2023;20(3):90-105. (In Russ.) https://doi.org/10.37661/1816-0301-2023-20-3-90-105