1. Lederer D. J. et al. Control of confounding and reporting of results in causal inference studies. Guidance for authors from editors of respiratory, sleep, and critical care journals //Annals of the American Thoracic Society. - 2019. - T. 16. - №. 1. - S. 22-28.
2. Fletcher G. S. Clinical epidemiology: the essentials. -Williams & Wilkins, 1996.
3. Campbell D. T., Riecken H. W. Quasi-experimental design //International encyclopedia of the social sciences. - 1968. - T. 5. - №. 3. - S. 259-263.
4. Pearl, J. (2009) Causal inference in statistics: An overview. Statistics surveys 3, 96-146.
5. Shadish W. R., Luellen J. K. Quasi-experimental design //Handbook of complementary methods in education research. - Routledge, 2012. - S. 539-550.
6. Kelley K., Preacher K. J. On effect size //Psychological methods. - 2012. - T. 17. - №. 2. - S. 137.
7. Hodges, J.L., and Lehmann, E.L. (1963), Estimates of location based on rank tests. The Annals of Mathematical Statistics, 34, 598-611.
8. Hollander M., Wolfe D. A., Chicken E. Nonparametric statistical methods. - John Wiley & Sons, 2013.
9. Cohen J. Statistical power analysis for the behavioral sciences (Revised ed.). Hillsdale, NJ: Lawrence Earlbaum Associates. - 1988.
10. Glass G. V. Primary, secondary, and meta-analysis of research //Educational researcher. - 1976. - T. 5. - №. 10. - S. 3-8.
11. Hedges L. V. Distribution theory for Glass's estimator of effect size and related estimators //journal of Educational Statistics. - 1981. - T. 6. - №. 2. - S. 107-128.
12. Cliff N. Ordinal Methods for Behavioral Data Analysis. 1-197 //Norman Cliff. - 1996.
13. Cureton E. E. Rank-biserial correlation //Psychometrika. - 1956. - T. 21. - №. 3. - S. 287-290.
14. Cureton E. E. Rank-biserial correlation when ties are present //Educational and Psychological Measurement. - 1968. - T. 28. - №. 1. - S. 77-79.
15. Glass G. V. Note on rank biserial correlation //Educational and Psychological Measurement. - 1966. - T. 26. - №. 3. - S. 623-631.
16. Willson V. L. Critical values of the rank-biserial correlation coefficient //Educational and Psychological Measurement. - 1976. - T. 36. - №. 2. - S. 297-300.
17. Sawilowsky S. S. New effect size rules of thumb //Journal of modern applied statistical methods. - 2009. - T. 8. - №. 2. - S. 26.
18. Lovakov A., Agadullina E. R. Empirically derived guidelines for effect size interpretation in social psychology //European Journal of Social Psychology. - 2021. - T. 51. - №. 3. - S. 485-504.
19. Gignac G. E., Szodorai E. T. Effect size guidelines for individual differences researchers //Personality and individual differences. - 2016. - T. 102. - S. 74-78.
20. Funder D. C., Ozer D. J. Evaluating effect size in psychological research: Sense and nonsense //Advances in Methods and Practices in Psychological Science. - 2019. - T. 2. - №. 2. - S. 156-168.
21. Evans J. D. Straightforward statistics for the behavioral sciences. - Thomson Brooks/Cole Publishing Co, 1996.
22. Hess M. R., Kromrey J. D. Robust confidence intervals for effect sizes: A comparative study of Cohen’sd and Cliff’s delta under non-normality and heterogeneous variances //Annual meeting of the American Educational Research Association. - 2004. - T. 1.
23. Romano J. et al. Appropriate statistics for ordinal level data: Should we really be using t-test and Cohen’s d for evaluating group differences on the NSSE and other surveys //Annual meeting of the Florida Association of Institutional Research. - 2006. - T. 177. - S. 34.
24. Marfo P., Okyere G. A. The accuracy of effect-size estimates under normals and contaminated normals in meta-analysis //Heliyon. - 2019. - T. 5. - №. 6. - S. e01838.
25. McNemar Q. Note on the sampling error of the difference between correlated proportions or percentages //Psychometrika. - 1947. - T. 12. - №. 2. - S. 153-157.
26. Anscombe F. J. The transformation of Poisson, binomial and negative-binomial data //Biometrika. - 1948. - T. 35. - №. 3/4. - S. 246-254.
27. Abadie A. Semiparametric difference-in-differences estimators //The Review of Economic Studies. - 2005. - T. 72. - №. 1. - S. 1-19.
28. Sant’Anna P. H. C., Zhao J. Doubly robust difference-in-differences estimators //Journal of Econometrics. - 2020. - T. 219. - №. 1. - S. 101-122.
29. Rosenbaum P. R., Rubin D. B. The central role of the propensity score in observational studies for causal effects //Biometrika. - 1983. - T. 70. - №. 1. - S. 41-55.