1. ImageNet: A large-scale hierarchical image database / J. Deng [et al.] // 2009 IEEE Conf. on Computer Vision and Pattern Recognition, Miami, FL, USA, 20-25 June 2009. - Miami, 2009. - P. 248-255. https://doi.org/10.1109/CVPR.2009.5206848
2. Unsupervised pre-training for person re-identification / D. Fu [et al.] // 2021 IEEE/CVF Conf. on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20-25 June 2021. - Nashville, 2021. - P. 14745-14754. https://doi.org/10.1109/CVPR46437.2021.01451
3. Богатырева, А. А. Исследование способности к transfer learning сверточных нейронных сетей, обученных на ImageNet / А. А. Богатырева, А. Р. Виноградова, С. А. Тихомирова // Междунар. журнал прикладных и фундаментальных исследований. - 2019. - № 7. - С. 106-111.
4. Конарев, Д. И. Повышение точности предварительно обученных нейронных сетей путем тонкой настройки / Д. И. Конарев, А. А. Гуламов // Материалы конф. «Информационные технологии в управлении», Санкт-Петербург, 6-8 окт. 2020 г. - СПб., 2020. - С. 200-212.
5. DeVries, T. Improved Regularization of Convolutional Neural Networks with CutOut / T. DeVries, G. W. Taylor. - 2017. - Mode of access: https://doi.org/10.48550/arXiv.1708.04552. - Date of access: 09.08.2022.
6. Dropout: A simple way to prevent neural networks from overfitting / N. Srivastava [et al.] // J. of Machine Learning Research. - 2014. - No. 15. - P. 1929-1958. https://doi.org/10.5555/2627435.2670313
7. Choice of activation function in convolution neural network for person re-identification in video surveillance systems / H. Chen [et al.] // Programming and Computer Software. - 2022. - Vol. 48, no. 5. - P. 312-321. https://doi.org/10.1134/S0361768822050036
8. Random Erasing Data Augmentation / Z. Zhong [et al.]. - 2020. - Mode of access: https://doi.org/10.1609/AAAI.V34I07.7000. - Date of access: 09.08.2022.
9. CutMix: Regularization strategy to train strong classifiers with localizable features / S. Yun [et al.] // 2019 IEEE/CVF Intern. Conf. on Computer Vision (ICCV), Seoul, Korea (South), 27 Oct. - 2 Nov. 2019. - Seoul, 2019. - P. 6022-6031. https://doi.org/10.1109/ICCV.2019.00612
10. Cut-thumbnail: A novel data augmentation for convolutional neural network / T. Xie [et al.] // Proc. of the 29th ACM Intern. Conf. on Multimedia, Virtual Event, China, 20-24 Oct. 2021. - Virtual Event, China, 2021. - Р. 1627-1635. https://doi.org/10.1145/3474085.3475302
11. Mixup: Beyond Empirical Risk Minimization / H. Zhang [et al.]. - 2018. - Mode of access: https://doi.org/10.48550/arXiv.1710.09412. - Date of access: 09.08.2022.
12. ImageNet-Trained CNNs are Biased Towards Texture; Increasing Shape Bias Improves Accuracy and Robustness / R. Geirhos [et al.]. - 2019. - Mode of access: https://doi.org/10.48550/arXiv.1811.12231. - Date of access: 09.08.2022.
13. Gong, Y. An Effective Data Augmentation for Person Re-identification / Y. Gong, Z. Zeng. - 2021. - Mode of access: https://doi.org/10.48550/arXiv.2101.08533. - Date of access: 09.08.2022.
14. Adversarially occluded samples for person re-identification / H. Huang [et al.] // 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018. - Salt Lake City, 2018. - P. 5098-5107. https://doi.org/10.1109/CVPR.2018.00535
15. Deep learning for person re-identification: A survey and outlook / M. Ye [et al.] // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2021. - Vol. 44, iss. 6. - Р. 2872-2893. https://doi.org/10.1109/TPAMI.2021.3054775
16. Deep residual learning for image recognition / K. He [et al.] // 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016. - Las Vegas, 2016. - P. 770-778. https://doi.org/10.1109/cvpr.2016.90
17. Huang, G. Densely connected convolutional networks / G. Huang, Z. Liu, K. Q. Weinberger // 2017 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017. - Honolulu, 2017. - P. 2261-2269. https://doi.org/10.1109/CVPR.2017.243
18. Scalable person re-identification: A benchmark / L. Zheng [et al.] // 2015 IEEE Intern. Conf. on Computer Vision (ICCV), Santiago, Chile, 7-13 Dec. 2015. - Santiago, 2015. - P. 1116-1124. https://doi.org/10.1109/ICCV.2015.133
19. Performance Measures and a Data Set for Multi-target, Multi-camera Tracking / E. Ristani [et al.]. - 2016. - Mode of access: https://doi.org/10.1007/978-3-319-48881-3_2. - Date of access: 09.08.2022.
20. Person transfer GAN to bridge domain gap for person re-identification / L. Wei [et al.] // 2018 IEEE/CVF Conf. on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18-23 June 2018. - Salt Lake City, 2018. - P. 79-88. https://doi.org/10.1109/CVPR.2018.00016