1. A Survey on Recent Approaches for Natural Language Processing in Low-Resource Scenarios [Electronic resource] / M. A. Hedderich [et al.]. - 2020. - Mode of access: https://arxiv.org/abs/2010.12309. - Date of access: 12.10.2021.
2. Dai, A. M. Semi-supervised sequence learning [Electronic resource] / A. M. Dai, Q. V. Le // Proc. of the 28th Intern. Conf. on Neural Information Processing Systems. - 2015. - Vol. 2. - P. 3079-3087. https://doi.org/10.18653/v1/P17-1161
3. TICO-19: the translation initiative for Covid-19 [Electronic resource] / A. Anastasopoulos [et al.] // Proc. of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020. - Dec. 2020. - Mode of access: https://aclanthology.org/2020.nlpcovid19-2.5. - Date of access: 12.10.2021. https://doi.org/10.18653/v1/2020.nlpcovid19-2.5
4. Enabling low-resource transfer learning across Covid-19 corpora by combining event-extraction and co-training / A. Spangher [et al.] // Proc. of the 1st Workshop on NLP for COVID-19 at ACL 2020. - July 2020. - Mode of access: https://aclanthology.org/2020.nlpcovid19-acl.4. - Date of access: 12.10.2021.
5. Attention is all you need / A. Vaswani [et al.] // Proc. of the 31st Intern. Conf. on Neural Information Processing Systems, Long Beach, California, USA, 4-9 Dec. 2017. - Long Beach, 2017. - P. 6000-6010.
6. Качков, Д. И. Моделирование языка и двунаправленные представления кодировщиков: обзор ключевых технологий / Д. И. Качков // Информатика. - 2020. - Т. 17, № 4. - С. 61-72. https://doi.org/10.37661/1816-0301-2020-17-4-61-72
7. Cloze-driven pretraining of self-attention networks / A. Baevski [et al.] // Proc. of the 2019 Conf. on Empirical Methods in Natural Language Processing and the 9th Intern. Joint Conf. on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3-7 Nov. 2019. - Hong Kong, 2019. - P. 5360-5369. https://doi.org/10.18653/v1/D19-1539
8. RoBERTa: A Robustly Optimized BERT Pretraining Approach [Electronic resource] / Y. Liu [et al.]. - 2019. - Mode of access: https://arxiv.org/abs/1907.11692. - Date of access: 12.10.2021.
9. Замятин, К. Как и зачем сохранять языки народов России / К. Замятин, А. Пасанен, Я. Саарикиви. - Хельсинки, 2012. - 181 с.
10. Meisel, J. M. First and Second Language Acquisition (Cambridge Textbooks in Linguistics) / J. M. Meisel. - Cambridge University Press, 2011. - 318 р.
11. Clark, E. V. First Language Acquisition / E. V. Clark. - Cambridge University Press, 2009. - 2nd ed. - 490 р.
12. Лурия, А. Р. Язык и сознание / А. Р. Лурия ; под ред. Е. Д. Хомской. - М. : Изд-во Моск. ун-та, 1979. - 320 с.
13. Бурлак, С. А. Происхождение языка. Факты, исследования, гипотезы / С. А. Бурлак. - М. : Альпина Диджитал, 2019. - 609 с.
14. Немов, Р. С. Общая психология в 3 т. Том II в 4 кн. Книга 4. Речь. Психические состояния : учебник и практикум для академического бакалавриата / Р. С. Немов. - 6-е изд., перераб. и доп. - М. : Юрайт, 2017. - 243 с.
15. Evans, V. The Language Myth Why Language Is Not an Instinct / V. Evans. - Cambridge University Press, 2014. - 314 р.
16. Пирс, Ч. С. Принципы философии : в 2 т. / Ч. С. Пирс ; пер. с англ. В. В. Кирющенко, М. В. Колопотина. - СПб. : Санкт-Петербургское философское общество, 2001. - Т. 2. - 313 с.
17. Виноград, Т. Программа, понимающая естественный язык / Т. Виноград. - М. : Мир, 1976. - 296 с.
18. VQA: visual question answering / S. Antol [et al.] // IEEE Intern. Conf. on Computer Vision (ICCV). - Santiago, Chile, 2015. - P. 2425-2433. https://doi.org/10.1109/ICCV.2015.279
19. Embodied question answering / A. Das [et al.] // Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18-23 June 2018. - Salt Lake City, 2018. - P. 1-10.
20. A survey of reinforcement learning informed by natural language / J. Luketina [et al.] // Proc. of the Twenty-Eighth Intern. Joint Conf. on Artificial Intelligence, Macao, China, 10-16 Aug. 2019. - Macao, 2019. - P. 6309-6317. https://doi.org/10.24963/ijcai.2019/880
21. Janner, M. Representation learning for grounded spatial reasoning / M. Janner, K. Narasimhan, R. Barzilay // Transactions of the Association for Computational Linguistics. - 2018. - Vol. 6. - P. 49-61. https://doi.org/10.1162/tacl_a_00004
22. Côté, M.-A. TextWorld: A learning environment for text-based games / M.-A. Côté ; T. Cazenave, A. Saffidine, N. Sturtevant (eds.) // Computer Games. CGW 2018. Communications in Computer and Information Science. - Cham : Springer, 2018. - Vol. 1017. - Р. 41-75. https://doi.org/10.1007/978-3-030-24337-1_3
23. Arora, S. A survey of inverse reinforcement learning: Challenges, methods and progress [Electronic resource] / S. Arora, P. Doshi // Artificial Intelligence. - 2021. - Vol. 297. - Mode of access: https://arxiv.org/abs/1806.06877. - Date of access: 12.10.2021. https://doi.org/10.1016/j.artint.2021.103500
24. A general reinforcement learning algorithm that masters chess, shogi, and go through self-play / D. Silver [et al.] // Science. - 2018. - Vol. 362, no. 6419. - P. 1140-1144. https://doi.org/10.1126%2Fscience.aar6404
25. Freudenthal, D. Computational models of language development / D. Freudenthal, A. Alishahi ; P. J. Brooks, V. Kempe (eds.) // Encyclopedia of Language Development. - 1st ed. - SAGE Publications Inc., 2014. - P. 92-96.
26. Fazly, A. A probabilistic computational model of cross‐situational word learning / A. Fazly, A. Alishahi, S. Stevenson // Cognitive Science. - 2010. - Vol. 34, iss. 6. - P. 1017-1063. https://doi.org/10.1111/j.1551-6709.2010.01104.x
27. Christiansen, M. H. Connectionist natural language processing: the state of the art / M. H. Christiansen, N. Chater // Cognitive Science. - 1999. - Vol. 23, iss. 4. - P. 417-437. https://doi.org/10.1207/s15516709cog2304_2
28. Buttery, P. J. Computational models for first language acquisition / P. J. Buttery // Technical Report UCAM-CL-TR-675. - University of Cambridge, 2006. - Mode of access: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-675.pdf. - Date of access: 21.03.2021.
29. MacWhinney, B. The CHILDES Project: Tools for Analyzing Talk: Transcription Format and Programs (3rd ed.) / B. MacWhinney. - Lawrence Erlbaum Associates Publishers, 2000.
30. Jones, G. A process model of children’s early verb use / G. Jones, F. Gobet, J. M. Pine // Proc. of the 22th Annual Conf. of the Cognitive Science Society, Philadelphia, PA, 13-15 Aug. 2000. - Philadelphia, 2000. - P. 723-728.
31. Alishahi, A. Computational Modeling of Human Language Acquisition / A. Alishahi. - Morgan & Claypool, 2010. - 107 p.
32. Andersen, E. S. The impact of input: language acquisition in the visually impaired / E. S. Andersen, A. Dunlea, L. Kekelis // First Language. - 1993. - Vol. 13, no. 37. - P. 23-49. https://doi.org/10.1177/014272379301303703
33. Vlasov, V. Dialogue Transformers [Electronic resource] / V. Vlasov, J. E. M. Mosig, A. Nicho. - 2019. - Mode of access: https://arxiv.org/abs/1910.00486. - Date of access: 12.10.2021.
34. Андреев, А. В. Введение в формальную семантику : учеб. пособие / А. В. Андреев, О. А. Митрофанова, К. В. Соколов. - СПб. : СПбГУ, 2014. - 88 с.
35. Goddard, C. The search for the shared semantic core of all languages / C. Goddard ; C. Goddard, A. Wierzbicka (eds.) // Meaning and Universal Grammar - Theory and Empirical Findings. - Amsterdam : John Benjamins, 2002. - Vol. I. - P. 5-40.
36. Barnes, J. Evidentials in the Tuyuca Verb / J. Barnes // Intern. J. of American Linguistics. - 1984. - Vol. 50, no. 3. - P. 255-271.