Preview

Informatics

Advanced search

Automatic control of air temperature in the greenhouse considering the weather forecast data

https://doi.org/10.37661/1816-Q3Q1-2Q21-18-3-59-67

Abstract

The paper concerns the problem of improving energy efficiency and the quality of air temperature automatic control in industrial greenhouses. The article proposes a method based on the principle of disturbance compensation using weather forecast data. The plant dynamic model structure is described by the linear 1st order aperiodic link with delay both for the control circuit and for the disturbance circuit. To solve the problem of time delays in the plant mathematical model it is suggested along with the use of outside temperature sensor signal to take into account the weather forecast data for the outdoor temperature changes over the specific forthcoming interval of time. It allows the controller to generate appropriate compensation control signal in advance. The block diagram of the automatic control system of the greenhouse temperature is given. Theoretical mathematical expressions for the regulation algorithm and analysis of regulation quality are obtained and the results of numerical modeling of the temperature control process are presented. The proposed automatic control method can be used to regulate the air temperature in buildings with high requirements for microclimate parameters.

About the Author

A. G. Senkov
Belarusian State Agrarian Technical University
Belarus

Andrey G. Senkov - Cand. Sci. (Eng.), Assistant Professor, Head of the Department of Automated Production Control Systems.

Av. Nezavisimosti, 99, Minsk, 220023



References

1. Panferov V. I., Panferov S. V. Adaptation of the weather heating control schedule. Vestnik Moskovskogo gosudarstvennogo stroitel'nogo universiteta [Moscow State University of Civil Engineering Bulletin], 2011, no. 7, pp. 257-261 (In Russ.).

2. Cheikh El Najjarine M. H., Senkov A. G., Hurski N. N. Synthesis of feedforward compensator in the combined system of automatic control with PID-regulator on the main channel circuit. Doklady Belorusskogo gosudarstvennogo universiteta informatiki i radiojelektroniki [Reports of the Belarusian State University of Informatics and Radioelectronics], 2015, no. 4(90), pp. 98-102 (In Russ.).

3. Panferov V. I., Panferov S. V. Dynamic model of heating devices and systems. Vestnik Juzhno-Ural'skogo gosudarstvennogo universiteta. Serija "Komp'juternye tehnologii, upravlenie, radiojelektronika" [Bulletin of the South Ural State University. Series "Computer technology, Control, Electronics"], 2015, vol. 15, no. 2, pp. 75-82 (In Russ.).

4. Sotnikov A. G. Avtomatizacija sistem kondicionirovanija vozduha i ventiljacii. Automation of Air Conditioning and Ventilation Systems. Leningrad, Mashinostroenie, 1984, 240 p. (In Russ.).

5. Skanavi A. N., Mahov L. M., Svaritch V. E. Transient thermal processes in heating devices. Izvestija vuzov. Stroitel'stvo i arhitektura [Proceedings of Universities. Construction and Architecture], 1986, no. 4, pp. 86-88 (In Russ.).

6. Bobikov A. I., Bubnova T. S. Tuning filtered Smith predictor parameters with Simulink Response optimization. Vestnik Rjazanskogo gosudarstvennogo radiotehnicheskogo universiteta [Bulletin of the Ryazan State Radio Engineering University], 2017, no. 61, pp. 96-104 (In Russ.).

7. Oshhepkov, A. Ju. Sistemy avtomaticheskogo upravlenija: teorija, primenenie, modelirovanie v MATLAB. Automatic Control Systems: Theory, Application, Modeling in MATLAB. Saint Petersburg, Lan', 2013, 208 р. (In Russ.).


Review

For citations:


Senkov A.G. Automatic control of air temperature in the greenhouse considering the weather forecast data. Informatics. 2021;18(3):59-67. (In Russ.) https://doi.org/10.37661/1816-Q3Q1-2Q21-18-3-59-67

Views: 500


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)