Digital model of a pseudo-random number generator based on a continuous chaotic system
https://doi.org/10.37661/1816-0301-2020-17-4-36-47
Abstract
About the Authors
Y. A. DrybinBelarus
Yaugen A. Drybin, Postgraduate Student, Department of Intelligent Systems, Faculty of Radiophysics and Computer Technologies
Minsk
S. V. Sadau
Belarus
Siarhei V. Sadau, Postgraduate Student, Senior Lecturer, Department of Intelligent Systems, Faculty of Radiophysics and Computer Technologies
Minsk
V. S. Sadau
Belarus
Vasili S. Sadau, Cand. Sci. (Eng.), Associate Professor, Professor of the Department of Intelligent Systems, Faculty of Radiophysics and Computer Technologies
Minsk
References
1. Shannon C. A mathematical theory of communication. Bell System Technical Journal, 1948, vol. 27, iss. 3, рр. 379–423.
2. Shan L., Qiang H., Li J., Wang Z. Chaotic optimization algorithm based on Tent map. Control and Decision, 2005, vol. 20, no. 2, pp. 179–182.
3. Kocarev L., Jakimoski G. Logistic map as a block encryption algorithm. Physics Letters A, 2001, vol. 289, no. 4–5, pp. 199–206.
4. Pareek N. K., Patidar V., Sud K. K. Cryptography using multiple one-dimensional chaotic maps. Physics Letters A, 2003, vol. 309, no. 1–2, pp. 75–82.
5. Wong W. K., Lee L. P. A modified chaotic. Cryptographic method. Computer Physics Communications, 2001, no. 138, pp. 234–236.
6. Zhang H. G., Zhao Y., Yu W., Yang D. S. A unified approach to fuzzy modelling and robust synchronization of different hyperchaotic systems. Chinese Physics B, 2008, vol. 17, no. 11, pp. 529–533.
7. Wang Y., Liao X., Xiang T., Wong K. W., Yang D. Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map. Physics Letters A, 2007, vol. 363, no. 4, pp. 277–281.
8. Krot A. M., Sychou U. A. A spectral analysis of chaotic oscillations in simulation model of Chua’s circuit developed with use of matrix decomposition. Informatics, 2019, vol. 16, no. 1, pp. 7–23 (in Russian).
9. Kapranov M. V., Tomashevskiy A. I. Analiz fazovyh traektoriy v okrestnostyah osobyh tochek 2-D i 3-D nelineynyh system. Analysis of Phase Trajectories in the Vicinity of Singular Points of 2-D and 3-D Nonlinear Systems. Moscow, Izdatel'stvo Moskovskogo jenergeticheskogo instituta, 2003, 80 p. (in Russian).
10. Aliver V. Y. Haoticheskie rezhimy v nepreryvnyh dinamicheskih systemah [Chaotic regimes in continuous dynamical systems]. Vestnik Moskovskogo Gosudarstvennogo Tehnicheskogo Universiteta im. N. Je. Baumana. Serija «Priborostroenie» [Herald of the Bauman Moscow State Technical University. Series Instrument Engineering], 2006, no. 1, pp. 65–84 (in Russian).
11. Anischenko V. S., Vadivasova T. E., Okrokverchov G. A., Strelkova G. I. Korreljacionnyj analiz rezhimov determinirovannogo i zashumlennogo haosa [Correlation analysis of the modes of deterministic and noisy chaos]. Radiotehnika i elektronika [Radio Engineering and Electronics], 2003, vol. 48, no. 7, pp. 824–835 (in Russian).
Supplementary files
Review
For citations:
Drybin Y.A., Sadau S.V., Sadau V.S. Digital model of a pseudo-random number generator based on a continuous chaotic system. Informatics. 2020;17(4):36-47. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-4-36-47