1. Rawla P. Epidemiology of prostate cancer. World Journal of Oncology, 2019, vol. 10, no. 2, pp. 63-89.
2. Epstein J. I, Allsbrook W. C. Jr, Amin M. B., Egevad L. L. ISUP Grading Committee. The 2005 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma. The American Journal of Surgical Pathology, 2005, vol. 29, iss. 9, pp. 1228-1242.
3. Camparo P., Egevad L., Algaba F., Berney D. M., Boccon-Gibod L., …, Varma M. Utility of whole slide imaging and virtual microscopy in prostate pathology. Acta Pathologica, Microbiologica, et Immunologica Scandinavica, 2012, vol. 120, iss. 4, pp. 298-304.
4. Goldenberg S. L., Nir G., Salcudean S. E. A new era: artificial intelligence and machine learning in prostate cancer. Nature Reviews Urology, 2019, vol. 16, pp. 391-403.
5. Ström P., Kartasalo K., Olsson H., Solorzano L., Delahunt B., …, Eklund M. Artificial intelligence for diagnosis and grading of prostate cancer in biopsies: a population-based, diagnostic study. The Lancet Oncology, 2020, vol. 21, iss. 2, pp. 222-232.
6. Pantanowitz L., Quiroga-Garza G., Bien L., Heled R., Laifenfeld D., …, Dhir R. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: a blinded clinical validation and deployment study. The Lancet Digital Health, 2020, vol. 2, iss. 8, pp. e407-e416.
7. Bulten W., Balkenhol M., Belinga J.-J. A., Brilhante A., Çakır A., …, Litjens G. Artificial intelligence assistance significantly improves Gleason grading of prostate biopsies by pathologists. Modern Pathology, 2020. Available at: https://arxiv.org/abs/2002.04500 (accessed 06.08.2020).
8. Nagpal K., Foote D., Liu Y., Chen P.-H. C., Wulczyn E., …, Stumpe M. C. Development and validation of a deep learning algorithm for improving Gleason scoring of prostate cancer. Nature Partner Journal Digital Medicine, 2019, vol. 2, iss. 48, pp. 1-10.
9. Schuster C. A note on the interpretation of Weighted Kappa and its relations to other rater agreement statistics for metric scales. Educational and Psychological Measurement, April 2004, vol. 64, no. 2, pp. 243-253.
10. Luan S., Chen C., Zhang B., Han J., Liu J. Gabor convolutional networks. IEEE Transactions on Image Processing, 2018, vol. 27, no. 9, pp. 4357-4366.
11. Kovalev V., Volmer S. Color co-occurrence descriptors for querying-by-example. International Conference on Multimedia Modeling, Lausanne, Switzerland, 12-15 October 1998. Lausanne, 1998, pp. 32-38.
12. Achanta R., Shaji A., Smith R., Lucchi A., Fua P., Susstrunk S. SLIC superpixels compared to state-ofthe-art superpixel methods. IEEE Transactions on PAMI, 2012, vol. 34, no. 11, pp. 2274-2282.
13. Horn R. A., Johnson C. R. Matrix Analysis. Part 5. Norms for Vectors and Matrices. England, Cambridge University Press, 1990.
14. Macenko M., Niethammer M., Marron J., Borland D., Woosley J. T., …, Thomas N. E. A method for normalizing histology slides for quantitative analysis. 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Boston, MA, USA, 28 June - 1 July 2009. Boston, 2009, pp. 1107-1110.
15. Gulli A., Sujit P. Deep learning with Keras. Packt Publishing Ltd, 2017, 318 r.
16. Rubinstein R. Y., Kroese D. P. The Cross Entropy Method: a Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation (Information Science and Statistics). Berlin, Heidelberg, Springer-Verlag. 2004, 321 r.