Интеллектуальное кресло-робот со вспомогательными средствами связи с использованием откликов TEP и характеристик диапазона спектра более высокого порядка
https://doi.org/10.37661/1816-0301-2020-17-4-92-103
Аннотация
В последние годы все больше внимания уделяется навигационным и коммуникационным системам на основе электроэнцефалограммы головного мозга для сообществ с разными возможностями. Для предоставления навигационной системе вспомогательных средств связи в работе предложен настраиваемый протокол, использующий вызванные мыслительные потенциалы, чтобы помочь сообществам с разными возможностями. Представлены функции, основанные на спектрах более высокого порядка, для классификации семи основных задач, таких как Вперед, Влево, Вправо, Да, НЕТ, Помощь и Расслабление, которые можно использовать для управления креслом-роботом, а также для связи с использованием необычной парадигмы. Предлагаемая система записывает восьмиканальный беспроводной сигнал электроэнцефалографии от десяти субъектов, в то время как субъект воспринимал семь различных задач. Записанные сигналы мозговых волн предварительно обрабатываются для удаления интерференционных волн и сегментируются на сигналы шести частотных диапазонов: дельта, тета, альфа, бета, гамма 1-1 и гамма 2. Сигналы полосы частот сегментируются на выборки кадров равной длины и используются для извлечения признаков с использованием оценки биспектра. Кроме того, статистические характеристики, такие как среднее значение биспектральной величины и энтропия с использованием области биспектра, извлекаются и формируются как набор характеристик. Извлеченные наборы функций проходят десятикратную перекрестную проверку с использованием классификатора многослойной нейронной сети. Результаты показали, что энтропия модели классификатора на основе характеристик биспектральной величины имеет максимальную точность классификации 84,71 %, а среднее значение модели классификатора на основе характеристик биспектральной величины – минимальную точность классификации 68,52 %.
Об авторах
Сатис Кумар НатараджБахрейн
Доктор Сатис Кумар Натарадж, доцент (класс 3), факультет мехатроники Международного университета AMA, Бахрейн. Получил в области мехатронной инженерии докторскую степень и звание магистра наук в Университете Малайзии Перлис, бакалавра технических наук в Технологическом колледже им. К. С. Рангасвами, Индия
Паулрадж Муругеса Пандиян
Индия
Профессор, доктор Паулрадж Муругеса Пандиян, директор Технологического института Шри Рамакришны, Коимбатур, Тамилнаду, Индия. Имеет докторскую степень в области компьютерных наук, 32-летний опыт преподавания и более 10 лет исследовательского и руководящего опыта в области нейронных сетей.
Сазали бин Яакоб
Малайзия
Профессор, доктор Сазали бин Яакоб, профессор кафедры электротехники Малазийского испанского института Университета Куала-Лумпур, а также возглавляет исследовательский кластер интеллектуальных автомобильных систем, занимающийся обработкой сигналов, поведением водителей, управлением энергопотреблением. Получил степень бакалавра электротехники в Университете Малайзии Перлис, а затем степень магистра в области системной инженерии в Университете Суррея и доктора наук в области техники управления в Университете Шеффилда, Соединенное Королевство. Присужден статус дипломированного инженера Инженерным советом Соединенного Королевства в 2005 г., является членом IET (Великобритания)
Абдул Хамид Адом
Малайзия
Профессор, доктор Абдул Хамид Адом, профессор программы мехатронной инженерии (RK24) в Школе мехатронной инженерии в Университете Малайзии Перлис. Получил степень бакалавра, магистра и доктора в Ливерпульском Университете им. Джона Мурса, Великобритания
Список литературы
1. Whitlatch C. J., Orsulic-Jeras S. Meeting the informational, educational, and psychosocial support needs of persons living with dementia and their family caregivers. Gerontologist, 2018, vol. 58, no. suppl_1, pp. S58–S73.
2. Lees A. J., Blackburn N. A., Campbell V. L. The nighttime problems of Parkinson’s disease. Clinical Neuropharmacology, Dec. 1988, vol. 11, no. 6, pp. 512–519.
3. Lacomis D., Terry Petrella J., Giuliani M. J. Causes of neuromuscular weakness in the intensive care unit: A study of ninety-two patients. Muscle and Nerve, May 1998, vol. 21, no. 5, pp. 610–617.
4. Jerath N. U., Simoens K., Mann D., Kollasch S., Grosland N., …, Reddy C. G Survey of the functional priorities in patients with disability due to neuromuscular disorders. Disability and Rehabilitation: Assistive Technology, 2019, vol. 14, no. 2, pp. 133–137.
5. Millan J. R., Renkens F., Mouriño J., Gerstner W. Noninvasive brain-actuated control of a mobile robot by human EEG. IEEE Transactions on Biomedical Engineering, 2004, vol. 51, no. 6, pp. 1026–1033.
6. Philips J., Millan J. del R., Vanacker G., Lew E., Galan F., …, Nuttin M. Adaptive shared control of a brain-actuated simulated wheelchair. IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, Netherlands, 13–15 June 2007, pp. 408–414.
7. Speier W., Arnold C., Lu J., Deshpande A., Pouratian N. Integrating language information with a hidden Markov model to improve communication rate in the P300 speller. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2014, vol. 22, no. 3, pp. 678–684.
8. Gürkök H., Nijholt A. Brain-computer interfaces for multimodal interaction: a survey and principles. International Journal of Human-Computer Interaction, Jun. 2011, vol. 28, no. 5, pp. 292–307.
9. Näätänen R., Kujala T., Light G. Mismatch Negativity: A Window to the Brain. Oxford University Press, 2019, 288 р.
10. Trejo L. J., Rosipal R., Matthews B. Brain-computer interfaces for 1-D and 2-D cursor control: designs using volitional control of the EEG spectrum or steady-state visual evoked potentials. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, vol. 14, no. 2, pp. 225–229.
11. Wang P., Shen J., Shi J. Feature extraction of eeg for imagery left-right hands movement. ChineseJournal of Sensors and Actuators, 2010, vol. 9.
12. Loeser J. D., Black R. G., Christman A. Relief of pain by transcutaneous stimulation. Journal ofNeurosurgery, 1975, vol. 42, no. 3, pp. 308–314.
13. Armiger R. S., Tenore F. V., Bishop W. E., Beaty J. D., Bridges M. M., …, Harshbarger S. D. A real-time virtual integration environment for neuroprosthetics and rehabilitation. The Johns Hopkins APL Technical Digest, 2011, vol. 30, no. 3, pp. 198–206.
14. Machado S., Araújo F., Paes F., Velasques B., Cunha M., …, Ribeiro P. EEG-based brain-computer interfaces: an overview of basic concepts and clinical applications in neurorehabilitation. Reviews in the Neurosciences, 2010, vol. 21, no. 6, pp. 451–468.
15. Yeo M. V. M, Li X., Shen K., Wilder-Smith E. P. V. Can SVM be used for automatic EEG detection ofdrowsiness during car driving? Safety Science, 2009, vol. 47, no. 1, pp. 115–124.
16. Lin C.-T., Lin F.-C., Chen S.-A., Lu S.-W., Chen T.-C., Ko L.-W. EEG-based brain-computer interface for smart living environmental auto-adjustment. Journal of Medical and Biological Engineering, 2010, vol. 30, no. 4, pp. 237–245.
17. Kaufmann T., Herweg A., Kübler A. Toward brain-computer interface based wheelchair control utilizing tactually-evoked event-related potentials. Journal of NeuroEngineering and Rehabilitation, 2014, vol. 11, no. 1, p. 7.
18. Nataraj S. K., Paulraj M. P., Yaacob S. Bin, Adom A. H. Performance comparison of TEP and VEP responses using bispectral estimation to command an intelligent robot chair with communication aid. Indian Journal of Science and Technology, 2015, vol. 8, no. 20, рр. 1–11.
19. Guenther F. H., Brumberg J. S., Wright E. J., Nieto-Castanon A., Tourville J. A., …, Kennedy P. R. A wireless brain-machine interface for real-time speech synthesis. PLoS One, 2009, vol. 4, no. 12, p. e8218.
20. Porbadnigk A., Wester M., Calliess J., Schultz T. EEG-based speech recognition impact of temporal effects. International Conference on Bio-Inspired Systems and Signal Processing, Porto, Portugal, 14–17 Janyary 2009, рр. 376–381.
21. Stamps K., Hamam Y. Towards inexpensive BCI control for wheelchair navigation in the enabled environment – a hardware survey. International Conference on Brain Informatics, Toronto, Canada, 28–30 August 2010, pp. 336–345.
22. Lopes A. C., Pires G., Vaz L., Nunes U. Wheelchair navigation assisted by Human-Machine sharedcontrol and a P300-based Brain Computer Interface. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, California, USA, 25–30 September 2011, pp. 2438–2444.
23. Vaughan T. M., Wolpaw J. R., Donchin E. EEG-Based communication: prospects and problems. IEEE Transactions on Rehabilitation Engineering, 1996, vol. 4, no. 4, pp. 425–430.
24. Nikias C. L., Raghuveer M. R. Bispectrum estimation: A digital signal processing framework. Proceedings of the IEEE, 1987, vol. 75, no. 7, pp. 869–891.
25. Sun L., Feng Z., Lu N., Wang B., Zhang W. An advanced bispectrum features for EEG-based motor imagery classification. Expert Systems with Applications, 2019, vol. 131, pp. 9–19.
26. Yuvaraj R., Acharya U. R., Hagiwara Y. A novel Parkinson’s Disease Diagnosis Index using higherorder spectra features in EEG signals. Neural Computing & Applications, 2018, vol. 30, no. 4, pp. 1225–1235.
27. Guger C., Allison B., Edlinger G. Brain-Computer Interface Research: A State-of-the-Art Summary. Springer, 2013, 123 р.
28. Nataraj S. K., Yaacob S. Bin, Paulraj M. P., Adom A. H. EEG based Intelligent robot chair with communication aid using statistical cross correlation based features. 2014 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Belfast, United Kingdom, 2–5 November 2014, pp. 12–18.
29. Kübler A., Kotchoubey B., Hinterberger T., Ghanayim N., Perelmouter J., …, Birbaumer N. The thought translation device: A neurophysiological approach to communication in total motor paralysis. Experimental Brain Research, 1999, vol. 124, no. 2, pp. 223–232.
30. Nataraj S. K., Paulraj M. P., Yaacob S. Bin, Adom A. H. Statistical cross-correlation band features based thought controlled communication system. AI Communications, 2016, vol. 29, no. 4, pp. 497–511.
31. Teplan M. Fundamentals of EEG measurement. Measurement Science Review, 2002, vol. 2, no. 2, pp. 1–11.
32. Kaiser D. A. What is quantitative EEG? Journal of Neurotherapy, 2007, vol. 10, no. 4, pp. 37–52.
33. Tai K., Blain S., Chau T. A review of emerging access technologies for individuals with severe motor impairments. Assistive Technology, 2008, vol. 20, no. 4, pp. 204–219.
34. Ortner R., Grünbacher E., Guger C. State of the Art in Sensors, Signals and Signal Processing, 2013.
35. Raghuveer M. R., Nikias C. L. Bispectrum estimation: A parametric approach. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, vol. 33, no. 5, pp. 1213–1230.
36. Paulraj M. P., Sivanandam S. N. Introduction to Artificial Neural Networks. India, Vikas Publishing House, 2003, 236 р.
37. Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. International Joint Conference on Artificial Intelligence (IJCAI), Montréal, Canada, 20–25 August 1995, vol. 14, no. 2, pp. 1137–1145.
Рецензия
Для цитирования:
Натарадж С.К., Пандиян П.М., Яакоб С.б., Адом А.Х. Интеллектуальное кресло-робот со вспомогательными средствами связи с использованием откликов TEP и характеристик диапазона спектра более высокого порядка. Информатика. 2020;17(4):92-103. https://doi.org/10.37661/1816-0301-2020-17-4-92-103
For citation:
Nataraj S.K., Pandiyan P.M., Yaacob S.B., Adom A.b. Intelligent robot chair with communication aid using TEP responses and higher order spectra band features. Informatics. 2020;17(4):92-103. https://doi.org/10.37661/1816-0301-2020-17-4-92-103