1. Anfinsen C. B. Principles that govern the folding of protein chains. Science, 1973, vol. 181 (4096), pp. 223-230. https://doi.org/10.1126/science.181.4096.223
2. Lecun Y., Bengio Y., Hinton G. Deep learning. Nature, 2015, vol. 521 (7553), pp. 436-444. https://doi.org/10.1038/nature14539
3. Senior A. W., Evans R., Jumper J., Kirkpatrick J., Sifre L., …, Hassabis D. Improved protein structure prediction using potentials from deep learning. Nature, 2020, vol. 577 (7792), pp. 706-710. https://doi.org/10.1038/s41586-019-1923-7
4. Billings W. M., Hedelius B., Millecam T., Wingate D., Corte D. D. ProSPr: democratized implementation of alphafold protein distance prediction network. Biorxiv, 2019, p. 830273. https://doi.org/10.1101/830273
5. Kryshtafovych A. T., Schwede, Topf M., Fidelis K., Moult J. Critical assessment of methods of protein structure prediction (CASP) - Round XIII. Proteins: Structure, Function, and Bioinformatics, 2019, vol. 87 (12), pp. 1011-1020. https://doi.org/10.1002/prot.25823
6. Jones D. T., Kandathil S. M. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics, 2018, vol. 34, pp. 3308-3315.
7. Seemayer S., Gruber M., Söding J. CCMpred - fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics, 2014, vol. 30 (21), pp. 3128-3130.
8. Jones D. T., Singh T., Kosciolek T., Tetchner S. MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins. Bioinformatics, 2015, vol. 31 (7), pp. 999-1006.
9. Jiang Q., Jin X., Lee S.-J., Yao S. Protein secondary structure prediction: a survey of the state of the art. Journal of Molecular Graphics and Modelling, 2017, vol. 76, pp. 379-402. https://doi.org/10.1016/j.jmgm.2017.07.015
10. Skwark M. J., Raimondi D., Michel M., Elofsson A. Improved contact predictions using the recognition of protein like contact patterns. PLoS Computational Biology, 2014, vol. 10 (11), p. e1003889. https://doi.org/10.1371/journal.pcbi.1003889
11. Berman H. M. The protein data bank: a historical perspective. Acta Crystallographica Section A: Foundations of Crystallography, 2008, vol. 64 (1), pp. 88-95. https://doi.org/10.1107/S0108767307035623
12. Mou Y., Huang P.-S., Hsu F.-C., Huang S.-J., Mayo S. L. Computational design and experimental verification of a symmetric protein homodimer. Proceedings of the National Academy of Sciences of the United States of America, 2015, vol. 112 (34), pp. 10714-10719. https://doi.org/10.1073/pnas.1505072112
13. Long J., Shelhamer E., Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, Massachusetts, USA, 7-12 June 2015. Boston, 2015, pp. 3431-3440. https://doi.org/10.1109/CVPR.2015.7298965
14. Fu J., Liu J., Tian H., Li Y., Bao Y., …, Lu H. Dual attention network for scene segmentation. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Long Beach, California, USA, 15-20 June 2019. Long Beach, 2019, pp. 3141-3149. Available at: http://arxiv.org/abs/1809.02983 (accessed 27.03.2020).
15. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, 27-30 June 2016. Las Vegas, 2016, pp. 770-778. https://doi.org/10.1109/CVPR.2016.90
16. Chen L.-C., Papandreou G., Kokkinos I., Murphy K., Yuille A. L. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, vol. 40 (4), pp. 834-848. https://doi.org/10.1109/TPAMI.2017.2699184
17. Kingma D. P., Ba J. Adam: a method for stochastic optimization. 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7-9 May 2015. San Diego, 2015. Available at: https://arxiv.org/abs/1412.6980 (accessed 27.03.2020).
18. Mitternacht S. FreeSASA: an open source C library for solvent accessible surface area calculations. F1000Research, 2016, vol. 5, p. 189. https://doi.org/10.12688/f1000research.7931.1
19. Janin J., Bahadur R. P., Chakrabarti P. Protein-protein interaction and quaternary structure. Quarterly Reviews of Biophysics, 2008, vol. 41 (2), pp. 133-180. https://doi.org/10.1017/S0033583508004708
20. Cock P. J., Antao T., Chang J. T., Chapman B. A., Cox C. J., …, de Hoon M. J. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009, vol. 25 (11), pp. 1422-1423. https://doi.org/10.1093/bioinformatics/btp163