Preview

Informatics

Advanced search

Modeling and nonlinear analysis of chaotic wave processes in electrochemically active neuronal media based on matrix decomposition

https://doi.org/10.37661/1816-0301-2020-17-3-7-24

Abstract

A general model of the origin and evolution of chaotic wave processes in electrochemically active neuronal media based on the proposed method of matrix decomposition of operators of nonlinear systems has been developed. The mathematical models of Hodgkin – Huxley and FitzHugh – Nagumo of an electrochemically active neuronal media are considered. The necessary conditions for self-organization of chaotic self-oscillations in the FitzHugh – Nagumo model are determined. Computer modeling based on the matrix decomposition of chaotic wave processes in electrochemically active neuronal media has shown the interaction of higher-order nonlinear processes leading to stabilization (to a finite value) of the amplitude of the chaotic wave process. Mathematically, this is expressed in the synchronous “counteraction” of nonlinear processes of even and odd orders in the general vector-matrix model of an electrochemically active neuronal media being in a chaotic mode. It is noted that the state of hard self-excitation of nonlinear oscillations in an electrochemically active neuronal media leads to the appearance of a chaotic attractor in the state space. At the same time, the  proposed vector-matrix model made it possible to find more general conditions for the appearance and evolution of chaotic wave  processes in  comparison with  the  initial  Landau  turbulence model  and,  as  a  result,  to  explain  the occurrence of consistent nonlinear phenomena in an electrochemically active neuronal media.

About the Authors

A. M. Krot
The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Alexander M. Krot, Dr. Sci. (Eng.), Professor, Head of the  Laboratory  of  Self-Organization  Systems Modeling

Minsk



S. I. Pavlov
The United Institute of Informatics Problems of the National Academy of Sciences of Belarus
Belarus

Stanislav  I.  Pavlov,  Software  Engineer

Minsk



References

1. Ivanitsky G. R., Krinsky V. I. Avtovolnovye processy: obshhie zakonomernosti biologicheskih, himicheskih i fizicheskih aktivnyh sred [Autowave processes: general laws of biological, chemical and physical active media]. I Vsesojuznyj biofizicheskij s"ezd. Sekcija 20 [1st USSR Biophysical Congress. Section 20]. Pushchino, Nauchnyj centr biologicheskih issledovanij, 1982, 28 p. (in Russian).

2. Vasiliev V. A., Romanovsky Yu. M., Yakhno V. G. Avtovolnovye processy. Autowave Processes. Moscow, Nauka, 1987, 240 p. (in Russian).

3. Landau L. D. K probleme turbulentnosti [To the problem of turbulence]. Doklady Akademii nauk SSSR [Reports of the Academy of Sciences of USSR], 1944, vol. 44, no. 8, pp. 339–342 (in Russian).

4. Krot A. M. O klasse diskretnyh kvazistacionarnyh linejnyh dinamicheskih sistem [On a class of discrete quasistationary linear dynamic systems]. Doklady Akademii nauk SSSR [Reports of the Academy of Sciences of USSR], 1990, vol. 313, no. 6, pp. 1376–1380 (in Russian).

5. Lorenz E. N. Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 1963, vol. 20, March, pp. 130–141.

6. Ruelle D., Takens F. On the nature of turbulence. Communications in Mathematical Physics, 1971, vol. 20, pp. 167–192.

7. Nicolis G., Prigogine I. Self-organization in Nonequilibrium Systems: from Dissipative Structures to Order through Fluctuation. New York, John Willey&Sons, 1977, 512 р.

8. Haken H. Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Berlin, Heidelberg, Springer-Verlag, 1983, 356 р.

9. Bergé P., Pomeau Y., Vidal C. L’ordre Dans le Chaos: Vers une Approche Déterministe de la Turbulence. Paris, Hermann, 1988.

10. Krot A. M. Jevoljucionnaja model' haoticheskih volnovyh processov v slozhnyh dinamicheskih sistemah na osnove teorii matrichnoj dekompozicii [An evolutionary model of chaotic wave processes in complex dynamical systems based on the matrix decomposition theory]. Dopovіdі Nacіonal'noї akademії nauk Ukraїni [Reports of the National Academy of Sciences of Ukraine], 2019, no. 9, pp. 12–19 (in Russian). https://doi.org/10.15407/dopovidi2019.09.012

11. Scott A. Active and Nonlinear Wave Propagation in Electronics. New York, London, etc., John Willey&Sons, 1970, 326 р.

12. Hodgkin A. L., Huxley A. F. A quantitative description of ion currents and its applications to conduction and excitation in nerve membranes. The Journal of Physiology, 1952, vol. 117, pp. 500–544.

13. Fuortes M. G. F., Mantegazzini F. Interpretation of the repetitive firing of nerve cells. The Journal of General Physiology, 1962, vol. 45, pp. 1163–1179.

14. Koch C., Bernarder O., Douglas R. J. Do neurons have a voltage or a current threshold for action potential initiation? Journal of Computational Neuroscience, 1995, no. 2, pp. 63–82.

15. Nandapurcar P. J., Winfree A. T. Dynamically stability of untwised scroll rings in excitable media. Physica D, 1989, vol. 35, no. 3, pp. 277–288.

16. Courtemanche M., Scaggs W., Winfree A. T. Stable tree-dimensional action potential calculation in the FitzHugh – Nagumo model. Physica D, 1990, vol. 41, no. 1, pp. 173–182.

17. FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. BiophysicalJournal, 1961, vol. 1, pp. 445–446.

18. Nagumo J. S., Arimoto S., Yoshisawa S. An active pulse transmission line simulating nerve axon.Proceedings of the IRE, 1962, vol. 50, pp. 2061–2070.

19. Paydarfar D., Buerkel D. M. Dysrhythmias of the respiratory oscillator. Chaos, 1995, vol. 5, no. 1, pp. 18–29.

20. Dailudenko V. F., Krot A. M. Modelirovanie processov samoorganizacii v aktivnyh sredah [Modeling of processes of self-organization in active media]. Intellektual'nye sistemy [Intelligent systems], Minsk, Institute of Technical Cybernetics of the National Academy of Sciences of Belarus, 1998, vol. 1, pp. 32–45 (in Russian).

21. Krot A. M. The decomposition of vector functions in vector-matrix series into state-space of nonlinear dynamic system. EUSIPCO-2000: Proceedings X European Signal Processing Conference, Tampere, Finland, 4–8 September 2000. Tampere, 2000, vol. 3, pp. 2453–2456.

22. Krot A. M. Matrix decompositions of vector functions and shift operators on the trajectories of a nonlinear dynamical system. Nonlinear Phenomena in Complex Systems, 2001, vol. 4, no. 2, pp. 106–115.

23. Krot A. M. Analiz attraktorov slozhnyh nelinejnyh dinamicheskih sistem na osnove matrichnyh rjadov v prostranstve sostojanij [Analysis of attractors of complex nonlinear dynamical systems based on matrix series in the state-space]. Informatica [Informatics], 2004, vol. 1, no. 1, pp. 7–16 (in Russian).

24. Krot A. M. The development of matrix decomposition theory for nonlinear analysis of chaotic attractors of complex systems and signals. DSP-2009: Proceedings 16th IEEE International Conference on Digital Signal Processing, Thira, Santorini, Greece, 5–7 July 2009. Santorini, 2009, pp. 1–5. https://doi.org/10.1109/icdsp.2009.5201123

25. Krot A. M. Bifurcation analysis of attractors of complex systems based on matrix decomposition theory. IEM 2011: Proceedings of IEEE International Conference on Industrial Engineering and Management, Zhengzhou, China, 12–14 August 2011. Zhengzhou, 2011, pp. 1–5. https://doi.org/10.1109/icmss.2011.5999350

26. Krot A. M., Sychou U. A. Analiz haoticheskih rezhimov funkcionirovanija shemy Chzhua s gladkoj nelinejnost'ju na osnove metoda matrichnoj dekompozicii [The analysis of chaotic regimes in Chua’s circuit with smooth nonlinearity based on the matrix decomposition method]. Vestsі Natsyianal’nai akademіі navuk Belarusі. Seryia fizika-technichnykh navuk [Proceedings of the National Academy of Sciences of Belarus. Physicaltechnical Series], 2018, vol. 63, no. 4, pp. 501–512 (in Russian). https://doi.org/10.29235/1561-8358-2018-63-4-501-512

27. Landau L. D., Lifschitz E. M. Fluid Mechanics. Oxford, Pergamon, 1959, vol. 6, 539 p.

28. Erofeenko V. T., Kozlovskaya I. S. Fundamentals of Mathematical Modeling. Minsk, Belarusian State University, 2002, 195 p. (in Russian).


Review

For citations:


Krot A.M., Pavlov S.I. Modeling and nonlinear analysis of chaotic wave processes in electrochemically active neuronal media based on matrix decomposition. Informatics. 2020;17(3):7-24. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-3-7-24

Views: 606


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1816-0301 (Print)
ISSN 2617-6963 (Online)