Modelling environment for analyzing the algorithms for 3D reconstruction of videoendoscopic research objects
https://doi.org/10.37661/1816-0301-2020-17-1-18-28
Abstract
About the Authors
A. F. ChernyavskyBelarus
Aleksandr F. Chernyavsky, Academician of the National Academy of Sciences of Belarus, Dr. Sci. (Eng.), Professor, Head of the Research Laboratory of Specialized Computing Systems, A. N. Sevchenko Institute of Applied Physical Problems
K. A. Halavataya
Belarus
Katsiaryna A. Halavataya, Postgraduate Student, Senior Lecturer, Department of Intelligent Systems, Faculty of Radiophysics and Computer Technologies
V. S. Sadau
Belarus
Vasili S. Sadau, Cand. Sci. (Eng.), Associate Professor, Professor of the Department of Intelligent Systems, Faculty of Radiophysics and Computer Technologies
References
1. Shinomiya A., Shindo A., Kawanishi M., Miyake K., Nakamura T., ..., Tamiya T. Usefulness of the 3D virtual visualization surgical planning simulation and 3D model for endoscopic endonasal transsphenoidal surgery of pituitary adenoma: technical report and review of literature. Interdisciplinary Neurosurgery, 2018, vol. 13, pp. 13–19. https://doi.org/10.1016/j.inat.2018.02.002
2. Gatys L. A., Ecker A. S., Bethge M. Texture synthesis using convolutional neural networks. Advances in Neural Information Processing Systems, 2015, vol. 28, pp. 262–270.
3. Mamgain P. Autodesk 3ds Max 2019: a Detailed Guide to Arnold Renderer. Padexi Academic, 2018, 192 p.
4. Simonyan K., Zisserman A. Very deep convolutional networks for large-scale image recognition. International Conference on Learning Representations 2014 (ICLR 2014), Banff, Canada, 14–16 April 2014. Banff, 2014, рр. 1–14.
5. Bergmann U., Jetchev N., Vollgraf R. Learning texture manifolds with the periodic spatial GAN. Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017. Sydney, 2017, vol. 70, рр. 469–477.
6. Agarwal S., Snavely N., Seitz S. M., Szelisk R. Bundle adjustment in the large. Proceedings of the 11th European Conference on Computer Vision (ECCV 2010), Heraklion, Greece, 5–11 September 2010. Heraklion, 2010, рр. 29–42.
7. Halavataya K. А., Sadau V. S. Model formirovaniya izobrazheniy dlya trekhmernoy rekonstrukcii scen po dannym videoendoscopicheskyh issledovanii [Image formation model for three-dimensional reconstruction of scenes according to video endoscopic studies]. Vestnik Polotskogo gosudarstvennogo universiteta. Ser. S. Fundamental'nyye nauki [Vestnik of Polotsk State University. Ser. C. Basic Sciences], 2019, no. 12, pp. 43–49 (in Russian).
8. Lowe, D. G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, vol. 60, no. 2, pp. 91–110.
9. Rosten E., Drummond T. Machine learning for high-speed corner detection. Proceedings of the 9th European Conference on Computer Vision (ECCV 2006), Graz, Austria, 7–13 May 2006. Graz, 2006, рр. 430–443.
10. Calonder M., Lepetit V., Strecha Ch., Fua P. BRIEF: binary robust independent elementary features. Proceedings of the 11th European Conference on Computer Vision (ECCV 2010), Heraklion, Greece, 5–11 September 2010. Heraklion, 2010, рр. 778–792.
11. Rublee E., Rabaud V., Konolige K., Bradski G. ORB: an efficient alternative to SIFT or SURF. IEEE International Conference on Computer Vision (ICCV 2011), Barcelona, 6–13 November 2011. Barcelona, 2011, рр. 2564–2571.
12. Halavataya K., Sadov V. Optimizing local feature description and matching for realtime video sequence object detection. Open Semantic Technologies for Intelligent Systems. Minsk, 2019, pp. 269–272.
Review
For citations:
Chernyavsky A.F., Halavataya K.A., Sadau V.S. Modelling environment for analyzing the algorithms for 3D reconstruction of videoendoscopic research objects. Informatics. 2020;17(1):18-28. (In Russ.) https://doi.org/10.37661/1816-0301-2020-17-1-18-28