1. Dvorkovich A. V., Dvorkovich V. P. Metrologicheskoe obespechenie videoinformatsionnykh system. Metrological Support of Video Information Systems, Moscow, Technosphera, 2015, 784 p. (in Russian).
2. Goulekas K. Visual Effects in a Digital World: a Comprehensive Glossary of over 7,000 Visual Effects Terms. San Francisco, Morgan Kaufmann, 2001, 600 p.
3. Vorobjov D., Zakharova I., Bohush R., Ablameyko S. An effective object detection algorithm for high resolution video by using convolutional neural network. Advances in Neural Networks-ISNN2018. Lecture Notes in Computer Science, 2018, vol. 10878, pp. 503-510. https://doi.org/10.1007/978-3-319-92537-0_58
4. Yongxi L., Javidi T. Efficient object detection for high resolution images. Proceedings of 53 rd Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 September - 2 October 2015. Monticello, 2015, pp. 1091-1098. https://doi.org/10.1109/ALLERTON.2015.7447130
5. Xiao J., Hays J., Ehinger K., Oliva A., Torralba A. Sun database: large-scale scene recognition from abbey to zoo. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13-18 June 2010. San Francisco, 2010, pp. 3485-3492. https://doi.org/10.1109/CVPR.2010.5539970
6. Ruzicka V., Franchetti F. Fast and accurate object detection in high resolution 4K and 8K video using GPUs. Proceedings of 2018 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 25-27 September 2018. Waltham, 2018, pp. 1-7. https://doi.org/10.1109/HPEC.2018.8547574
7. Korshunov P., Ebrahimi T. UHD video dataset for evaluation of privacy. Proceedings of Sixth International Workshop on Quality of Multimedia Experience (QoMEX), Singapore, 18-20 September 2014. Singapore, 2014, pp. 232-237. https://doi.org/10.1109/QoMEX.2014.6982324
8. Unel F. O., Ozkalayci B., Çigla C. The power of tiling for small object detection. CVPR Workshops, 2019. Available at: http://openaccess.thecvf.com/content_CVPRW_2019/papers/UAVision/Unel_The_Power_of_Tiling_for_Small_Object_Detection_CVPRW_2019_paper.pdf. (accessed 18.01.2020).
9. Girshick R., Donahue J., Darrell T., Malik J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, vol. 38, pp. 142-158. https://doi.org/10.1109/TPAMI.2015.2437384
10. He K., Zhang X., Ren S., Sun J. Deep residual learning for image recognition. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27-30 June 2016. Las Vegas, 2016, pp. 770-778. https://doi.org/10.1109/CVPR.2016.90
11. Redmon J., Divvala S. K., Girshick R. B., Farhadi A. You only look once: unified, real-time object detection. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27-30 June 2016. Las Vegas, 2016, pp.779-788. https://doi.org/10.1109/CVPR.2016.91
12. Girshick R. Fast R-CNN. Proceedings of IEEE Intern. Conf. on Computer Vision (ICCV), Santiago, Chile, 11-18 December 2015. Santiago, 2015, pp. 1440-1448. https://doi.org/10.1109/ICCV.2015.169
13. Ren S., He K., Girshick R., Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, vol. 39, no. 6, pp. 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
14. Kroshchenko A., Golovko V., Bezobrazov S., Mikhno E., Khatskevich M, …, Brich A. Glubokoe obuchenie dlia detektirovaniia obieektov na izobrazheniiakh dokumentov [Deep training for detecting of objects at images of documents]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Fizika, matematika, informatika [Bulletin of the Brest State Technical University. Physics, mathematics, Computer Science], 2017, vol. 5 (107), pp. 2-9 (in Russian).
15. Szegedy C., Ioffe S., Vanhoucke V. Inception-v4, inception-ResNet and the impact of residual connections on learning. Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, California, USA, 4-9 February 2017. San Francisco, 2017, pp. 4278-4284.
16. Everingham M., Van Gool L., Williams C., Winn J., Zisserman A. The pascal Visual Object Classes (VOC) challenge. International Journal of Computer Vision, 2010, vol. 88, pp. 303-338. https://doi.org/10.1007/s11263-009-0275-4