1. Дворкович, А. В. Метрологическое обеспечение видеоинформационных систем / А. В. Дворкович, В. П. Дворкович. - М. : Техносфера, 2015. - 784 с.
2. Goulekas, K. Visual Effects in a Digital World: a Comprehensive Glossary of over 7,000 Visual Effects Terms / K. Goulekas. - San Francisco : Morgan Kaufmann, 2001. - 600 p.
3. An effective object detection algorithm for high resolution video by using convolutional neural network / D. Vorobjov [et al.] // Advances in Neural Networks-ISNN2018. Lecture Notes in Computer Science. - 2018. - Vol. 10878. - P. 503-510. https://doi.org/10.1007/978-3-319-92537-0_58
4. Yongxi, L. Efficient object detection for high resolution images / L. Yongxi, T. Javidi // Proc. of 53 rd Annual Allerton Conf. on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 Sept. - 2 Oct. 2015. - Monticello, 2015. - P. 1091-1098. https://doi.org/10.1109/ALLERTON.2015.7447130
5. Sun database: large-scale scene recognition from abbey to zoo / J. Xiao [et al.] // Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 13-18 June 2010. - San Francisco, 2010. - P. 3485-3492. https://doi.org/10.1109/CVPR.2010.5539970
6. Ruzicka, V. Fast and accurate object detection in high resolution 4K and 8K video using GPUs / V. Ruzicka, F. Franchetti // Proc. of 2018 IEEE High Performance Extreme Computing Conf. (HPEC), Waltham, MA, USA, 25-27 Sept. 2018. - Waltham, 2018. - P. 1-7. https://doi.org/10.1109/HPEC.2018.8547574
7. Korshunov, P. UHD video dataset for evaluation of privacy / P. Korshunov, T. Ebrahimi // Proc. of Sixth Intern. Workshop on Quality of Multimedia Experience (QoMEX), Singapore, 18-20 Sept. 2014. - Singapore, 2014. - P. 232-237. https://doi.org/10.1109/QoMEX.2014.6982324
8. Unel, F. O. The power of tiling for small object detection / F. O. Unel, B. Ozkalayci, C. Çigla // CVPR Workshops [Electronic resource]. - 2019. - Mode of access: http://openaccess.thecvf.com/content_CVPRW_2019/papers/UAVision/Unel_The_Power_of_Tiling_for_Small_Object_Detection_CVPRW_2019_paper.pdf. - Date of access: 18.01.2020.
9. Region-based convolutional networks for accurate object detection and segmentation / R. Girshick [et al.] // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2016. - Vol. 38. - P. 142-158. https://doi.org/10.1109/TPAMI.2015.2437384
10. Deep residual learning for image recognition / K. He [et al.] // Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27-30 June 2016. - Las Vegas, 2016. - P. 770-778. https://doi.org/10.1109/CVPR.2016.90
11. You only look once: unified, real-time object detection / J. Redmon [et al.] // Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2016), Las Vegas, NV, USA, 27-30 June 2016. - Las Vegas, 2016. - P. 779-788. https://doi.org/10.1109/CVPR.2016.91
12. Girshick, R. Fast R-CNN / R. Girshick // Proc. of IEEE Intern. Conf. on Computer Vision (ICCV), Santiago, Chile, 11-18 Dec. 2015. - Santiago, 2015. - P. 1440-1448. https://doi.org/10.1109/ICCV.2015.169
13. Faster R-CNN: towards real-time object detection with region proposal networks / S. Ren [et al.] // IEEE Transactions on Pattern Analysis and Machine Intelligence. - 2015. - Vol. 39, no. 6. - P. 1137-1149. https://doi.org/10.1109/TPAMI.2016.2577031
14. Глубокое обучение для детектирования объектов на изображениях документов / А. А. Крощенко и др. // Вестник БрГТУ. Физика, математика, информатика. - 2017. - № 5(107). - С. 2-9.
15. Inception-v4, inception-ResNet and the impact of residual connections on learning / C. Szegedy [et al.] // Proc. of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), San Francisco, California, USA, 4-9 Febr. 2017. - San Francisco, 2017. - P. 4278-4284.
16. The pascal Visual Object Classes (VOC) challenge / M. Everingham [et al.] // Intern. J. of Computer Vision. - 2010. - Vol. 88. - P. 303-338. https://doi.org/10.1007/s11263-009-0275-4