ASSEMBLY LINE BALANCING PROBLEMS WITH UNCERTAIN NUMERICAL PARAMETERS
Abstract
About the Authors
Yu. N. SotskovRussian Federation
A. S. Zatsiupa
Russian Federation
References
1. Salveson, M.E. The assembly line balancing problem / M.E. Salveson // The J. of Industrial Engineering. - 1955. - Vol. 6, № 3. - P. 18-25.
2. Baybars, I. A survey of exact algorithms for the simple assembly line balancing problem /I. Baybars // Management Science. - 1986. - Vol. 32. - P. 909-932.
3. Boysen, N. A classification of assembly line balancing problems / N. Boysen, M. Fliener, A. Scholl // European J. of Operational Research. - 2007. - Vol. 183. - P. 674-693.
4. Thomopoulos, N.T. Line balancing - sequencing for mixed model assembly / N.T. Thomopoulos // Management Science. - 1967. - Vol. 14. - P. 59-75.
5. Dar-El, E.M. Mixed-model assembly line sequencing problems / E.M. Dar-El // Omega. -1978. - Vol. 6. - P. 317-323.
6. Sparling, D. The mixed-model U-line balancing problem / D. Sparling, J. Miltenburg // International J. of Operational Research. - 1998. - Vol. 36. - P. 485-501.
7. Ege, Y. Assembly line balancing with station paralleling / Y. Ege, M. Azizoglu, N. Ozdemirel // Computers & Industrial Engineering. - 2009. - Vol. 57. - P. 1218-1225.
8. Tonge, F.M. A Heuristic program for assembly line balancing / F.M. Tonge. - Englewood Cliffs, NJ : Prentice-Hall, 1961. - 362 p.
9. Pinto, P.A. A branch and bound algorithm for assembly line balancing with paralleling /P.A. Pinto, D.G. Dannenbring, B.M. Khumawala // International J. of Production Res. - 1975. -Vol. 13. - P. 183-196.
10. Mansoor, E.M. Assembly line balancing - an improvement on the ranked positional weight technique / E.M. Mansoor // J. Industrial Engineering. - 1964. - Vol. 15. - P. 73-78.
11. Freeman, D.R. A general line balancing model / D.R. Freeman // Proc. 19th Annual Conf. AIIE. - Tampa, FLA, 1968. - P. 230-235.
12. Scholl, A. Balancing and sequencing of assembly line / A. Scholl; Second ed. - Heidelberg : Physical-Verlag, 1999. - 532 p.
13. Erel, E. A survey of the assembly line balancing procedures / E. Erel, S.C. Sarin // Production Planning and Control. - 1998. - Vol. 9. - P. 414-434.
14. Scholl, A. Balancing assembly lines effectively - A computational comparison / A. Scholl, R. Klein // European J. of Operational Research. - 1999. - Vol. 144. - P. 50-58.
15. Kottas, J.F. A cost oriented approach to stochastic line balancing / J.F. Kottas, H.S. Lau // AIIE Transactions. - 1973. - Vol. 5. - P. 164-171.
16. Reeve, N.R. Balancing stochastic assembly lines / N.R. Reeve, W.H. Thomas // AIIE Transactions. - 1973. - Vol. 5. - P. 223-229.
17. Kottas, J.F. A cost oriented approach to stochastic line balancing / J.F. Kottas, H.S. Lau // AIIE Transactions. - 1973. - Vol. 5. - P. 164-171.
18. Silverman, F.N. A cost- based methodology for stochastic line balancing with intermittent line stoppages / F.N. Silverman, J.C. Carter // Management Science. - 1986. - Vol. 32. - P. 455-463.
19. Shin, D. An efficient heuristic for solving stochastic assembly line balancing problem /D. Shin // Computers and Industrial Engineering. - 1990. - Vol. 18. - P. 285-295.
20. Shin, D. Uniform assembly line balancing with stochastic task limes in just-in-time manufacturing / D. Shin, H. Min // International J. of Operations and Production Management. - 1991. -Vol. 11, №. 8. - P. 23-34.
21. Gen, M. Solving fuzzy assembly-line balancing problem with genetic algorithms / M. Gen, Y. Tsujimura, E. Kubot // Computers inc. Engineering. - 1995. - Vol. 29. - P. 543-547.
22. Gen, M. Fuzzy assembly line balancing using genetic algorithms / M. Gen, Y. Tsujimura, Y. Li // Computers inc. Engineering. - 1996. - Vol. 31. - P. 631-634.
23. Rabbani, M. Considering the conveyer stoppages in sequencing mixed-model assembly lines by a new fuzzy programming approach / M. Rabbani, F. Radmehr, N. Manavizadeh // International J. of Advance Manufacture Technology. - 2010. - Vol. 10. - P. 170-180.
24. Ozcan, U. Multiple-criteria decision-making in two-sided assembly line balancing: A goal programming and a fuzzy goal programming models / U. Ozcan, B. Toklu // Computers & Operations Research. - 2009. - Vol. 36. - P. 1955 - 1965.
25. Mastor, A.A. An experimental investigation and comparative evaluation of production line balancing techniques / A.A. Mastor // Management Science. - 1970. - Vol. 16. - P. 728-746.
26. Sotskov, Yu. Stability analysis of optimal balance for assembly line with fixed cycle time / Yu. Sotskov, A. Dolgui, M.-C. Portmann // European J. of Operational Research. - 2006. - Vol. 168. - P. 783-797.
27. Sotskov, Yu.N. Teoriya raspisanii. Sistemy s neopredelennymi chislovymi parametrami / Yu.N. Sotskov, N.Yu. Sotskova. - Minsk : OIPI NAN Belarusi, 2004. - 290 c.
28. Zatsiupa, A. Enumeration of the stable optimal line balances for a simple assembly line balancing problem with fixed cycle time / A. Zatsiupa, Yu.N. Sotskov, A. Dolgui // 22-nd Intern. Conf. on Production Research. - Brazil, Iquassu, 2013. - P. 1-6.
29. Stability of optimal line balance with given station set / Yu.N. Sotskov [et al.] // A chapter in the book «Supply Chain Optimization», Applied Optimization. - Vol. 94. - USA, N.Y. : Springer, 2005. - P. 135-149.
30. Sotskov, Yu. Calculation of the stability radius of an optimal line balance / Yu. Sotskov, F. Werner, A. Zatsiupa // 14th IFAC symposium on information control problems in manufacturing. - Bucharest, Romania, 2012. - P. 192-197.
31. Sotskov, Yu. Stable optimal line balances with a fixed set of the working stations /Yu. Sotskov, A. Zatsiupa, A. Dolgui // IFAC conference MIM 2013. - St. Petersburg, Russia, 2013.
32. Gurevsky, E. Stability measure for a generalized assembly line balancing problem /E. Gurevsky, O. Battaïa, A. Dolgui // Discrete Applied Mathematics. - 2013. - Vol. 161. - P. 377-394.
33. Hifi, M. Sensitivity of the optimum to perturbations of the profit or weight of an item in the binary knapsack problem / M. Hifi, H. Mhalla, S. Sadfi // J. of Combinatorial Optimization. - 2005. - Vol. 10, № 3. - P. 239-260.
34. Hifi, M. An adaptive algorithm for the knapsack problem: perturbation of the profit or weight of an arbitrary item / M. Hifi, H. Mhalla, S. Sadfi // European J. of Industrial Engineering. - 2008. - Vol. 2, №. 2. - P. 134-152.
35. Stability aspects of the traveling salesmen problem based on -best solutions / M. Libura [et al.] // Discrete Applied Mathematics. - 1998. - Vol. 87, № 1-3. - P. 159-185.
36. Ramaswamy, R. Sensitivity analysis for shortest path problems and maximum capacity path problems in undirected graphs / R. Ramaswamy, J. Orlin, N. Chakravarti // Mathematical Programming. - 2005. - Vol. 102, № 2. - P. 355-369.
37. Bräsel, H. Stability of a schedule minimizing mean flow time / H. Bräsel, Yu. Sotskov, F. Werner // Mathematical and Computer Modelling. - 1996. - Vol. 24, № 10. - P. 39-53.
38. Kravchenko, S. Optimal schedules with infinitely large stability radius / S. Kravchenko, Yu. Sotskov, F. Werner // Optimization. - 1995. - Vol. 33, № 3. - P. 271-280.
39. Sotskov, Yu. Stability of an optimal schedule / Yu. Sotskov // European J. of Operational Research. - 1991. - Vol. 55, № 1. - P. 91-102.
40. Scheduling under uncertainty: Theory and Algorithms / Yu. Sotskov [et al.]. - Minsk : Belorusskaya Nauka, 2010. - 326 p.
41. Sotskov, Yu. Stability of an optimal schedule in a job shop / Yu. Sotskov, N. Sotskova, F. Werner // Omega. - 1997. - Vol. 25, № 4. - P. 397-414.
42. Sotskov, Yu. Stability radius of an optimal schedule: a survey and recent developments /Yu. Sotskov, V. Tanaev, F. Werner // Industrial Applications of Combinatorial Optimization. - 1998. - Vol. 16. - P. 72-108.
43. Sotskov, Yu. On the calculation of the stability radius of an optimal or an approximate schedule / Yu. Sotskov, A. Wagelmans, F. Werner // Annals of Operations Research. - 1998. - Vol. 83. - P. 213-252.
44. Schedule execution for two-machine flow-shop with interval processing times / N.M. Matsveichuk [et al.] // Mathematical and Computer Modelling. - 2009. - Vol. 49. - R. 991-1011.
45. Sotskov, Yu.N. Minimizing total weighted flow time of a set of jobs with interval processing times / Yu.N. Sotskov, N.G. Egorova, T.-C. Lai // Mathematical and Computer Modelling. - 2009. - Vol. 50. - R 556-573.
46. Two-machine flow-shop minimum-length scheduling with interval processing times / C.T. Ng [et al.] // Asia-Pacific Journal of Operational Research. - 2009. - Vol. 26, № 6. - R. 715-734.
47. Sotskov, Yu.N. Minimizing total weighted completion time with uncertain data: A stability approach / Yu.N. Sotskov, N.G. Egorova, F. Werner // Automation and Remote Control. - 2010. - Vol. 71, № 10. - R. 2038-2057.
48. Sotskov, Yu.N. Minimizing total weighted flow under uncertainty using dominance and a stability box / Yu.N. Sotskov, T.-C. Lai // Computers & Operations Research. - 2012. - Vol. 39. - R. 1271-1289.
49. Matsveichuk, N.M. The dominance digraph as a solution to the two-machine flow-shop problem with interval processing times / N.M. Matsveichuk, Yu.N. Sotskov, F. Werner // Optimization. - 2011. - Vol. 60, № 12. - R. 1493-1517.
50. Sotskov, Yu.N. Measures of problem uncertainty for scheduling with interval processing times / Yu.N. Sotskov, T.-C. Lai, F. Werner // OR Spectrum. - 2013. - Vol. 35. - R. 659-689.
51. Sotskov, Yu.N. Measure of uncertainty for Bellman-Johnson problem with interval data /Yu.N. Sotskov, N.M. Matsveichuk // Cybernetics and System Analysis - 2012. - Vol. 48, № 5. - P. 641-652.
Review
For citations:
Sotskov Yu.N., Zatsiupa A.S. ASSEMBLY LINE BALANCING PROBLEMS WITH UNCERTAIN NUMERICAL PARAMETERS. Informatics. 2013;(4):54-65. (In Russ.)
ISSN 2617-6963 (Online)