2007

январь-март

№ 1

УДК 519.63

О.Н. Гайдук¹, О.М.Королёва², М.М. Чуйко², А.И. Шнип³

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ВЫРАБОТКИ ПАРА В УСТАНОВКЕ ГИДРОКОНВЕРСИИ ВАКУУМНОГО ГАЗОЙЛЯ

Предлагается вычислительный алгоритм для определения параметров неизотермических напорных течений в гидравлической сети узла выработки пара установки гидроконверсии вакуумного газойля. Используется математическая модель несжимаемой жидкости. Строятся неявные конечноразностные схемы для аппроксимации уравнений тепло- и массопереноса. Доказывается разрешимость полученных систем линейных алгебраических уравнений. Приводятся результаты вычислительного эксперимента.

Введение

Современные нефтеперерабатывающие предприятия оснащены системами автоматического управления технологическими процессами. Такие системы позволяют существенно снизить затраты на производство за счет повышения управляемости технологическими процессами и качества выходной продукции. Для решения задач обеспечения безопасной эксплуатации сложных технологических установок, снижения потерь от незапланированных остановок и аварий по вине обслуживающего персонала необходимо постоянно поддерживать высокий уровень подготовки операторов установок. Обучение поведению персонала в критических условиях на реальном объекте невозможно по соображениям безопасности или из-за снижения эффективности производства. Проблему обучения и тренинга можно решить заменой реальной установки на тренажер [1]. Тренажеры должны вырабатывать устойчивые навыки действий обслуживающего персонала как при пуске и остановке оборудования, работе в штатном режиме, так и при возникновении нештатных и аварийных ситуаций.

В Институте математики НАН Беларуси при участии специалистов Объединенного института проблем информатики НАН Беларуси, Института тепло- и массообмена им. А.В. Лыкова НАН Беларуси и ОАО «Мозырский НПЗ» создан динамический программный тренажер для обучения операторов установки гидроконверсии вакуумного газойля (ГКВГ). В основе тренажера лежат математические модели процессов ректификации, тепло- и массопереноса сырья и продуктов в установке ГКВГ. Указанные процессы описываются взаимосвязанными системами обыкновенных дифференциальных уравнений, нелинейных алгебраических уравнений и уравнений в частных производных [2].

Технологические установки нефтехимии представляют собой сложные разветвленные гидравлические сети. Построение адекватных математических моделей течения рабочих сред и разработка численных методов для анализа стационарных и переходных процессов в гидравлических сетях весьма актуальны [3, 4]. В настоящей работе приведены математические модели основных устройств узла выработки пара установки ГКВГ. Исследуемые процессы тепло- и массопереноса описываются уравнениями гидравлики и конвективного теплообмена, заданными на графе.

В работе [5] представлен вычислительный алгоритм для математического моделирования изотермических течений в гидравлических сетях. В предлагаемой статье для совместного решения уравнений гидравлики и конвективного теплообмена, заданных на графе, построены вычислительные алгоритмы на базе неявных разностных схем. Использование неявных разностных схем для решения задач на графах приводит к системам нелинейных алгебраических уравнений относительно искомых сеточных функций большой размерности. Исходная задача сводится к задаче нахождения узловых давлений и температур. При этом размерность полученных систем линейных уравнений равна числу внутренних вершин графа и для матриц систем показано выполнение условия диагонального преобладания. Приведены результаты вычислительного го эксперимента по моделированию процессов парообразования в узле выработки пара среднего давления установки ГКВГ при пуске рибойлера в эксплуатацию.

1. Математические модели устройств узла выработки пара

На технологические нужды секции гидроконверсии используется насыщенный водяной пар, вырабатываемый в рибойлерах T-351N и T-356N за счет утилизации тепла горячих нефтепродуктовых потоков из ректификационной колонны К-351. Принципиальная схема узла выработки пара установки ГКВГ показана на рис. 1. Узел выработки пара представляет собой гидравлическую сеть, включающую насосы H370NA, H370NB для подачи питательной (деаэрированной) воды в рибойлеры T-351N и T-356N, соединительные трубопроводы 1–15 питательной магистрали и трубопроводы 16–47 паровой магистрали, ручные задвижки, обратные и предохранительные клапаны, электрозадвижки EUV0013 и EUV0014. Клапаны LV0003 и LV0006 предназначены для автоматического регулирования уровня воды в рибойлерах. Для регулирования давления пара в паровых линиях используются клапаны PV0035 и PV0038. Расходы питательной воды и выработанного пара регистрируются приборами FE0022, FE0023, FE0024, FE0026, FE3043. Насыщенный водяной пар из рибойлеров T-351N и T-356N с температурой порядка 150 °C в пароперегревателе печи П-351N нагревается до температуры порядка 360 °C и используется для отпарки бензиновой фракции в колонне фракционирования К-351N. Температура пара регистрируется приборами FE0024, TE3119.

Рис. 1. Принципиальная схема парогенерирующего узла

При расчете тепловых процессов в гидравлической системе область определения задачи может быть представлена в виде ориентированного графа *G*, ребрами которого являются трубопроводы, а вершинами – их разветвления.

Пусть $\eta = \{1, 2, ..., n\}$, $\eta_{\Gamma} = \{n + 1, n + 2, ..., n + n_{\Gamma}\}$, $\gamma = \{1, 2, ..., M\}$ – множества номеров внутренних вершин, граничных вершин и ребер графа соответственно. Обозначим $\gamma_{(q)}^{+}$, $\gamma_{(q)}^{-}$ множества номеров ребер, примыкающих своими правым и левым концами к вершине q, а γ_{Γ}^{+} и γ_{Γ}^{-} – множества номеров ребер, входящих и выходящих из висячих вершин.

Трубопроводы. Из технологического регламента известно, что перепады давлений в элементах системы малы по сравнению с абсолютным давлением. Поэтому гидравлика моделируется в приближении несжимаемой жидкости. Неизотермическое течение несжимаемой жидкости в трубопроводах описывается следующими уравнениями гидравлики и конвективного теплообмена [6]:

$$l_{k}\rho \frac{dv_{k}}{dt} = p_{k}^{-} - p_{k}^{+} - \rho \xi_{k,T} \frac{|v_{k}|v_{k}}{2}; \qquad (1)$$

$$\rho c_{p} \left(\frac{\partial T_{k}}{\partial t} + v_{k} \frac{\partial T_{k}}{\partial x_{k}} \right) = \lambda \frac{\partial^{2} T_{k}}{\partial x_{k}^{2}} - \alpha_{k} \left(T_{k} - T_{out} \right), \ x_{k} \in (0, l_{k}), \ t > 0, \ k \in \gamma,$$

$$(2)$$

где $v_k(t)$, $T_k(x_k,t)$ – искомые скорости и температуры; $p_k^-(t)$, $p_k^+(t)$ – давления на входе и выходе из трубопровода соответственно; l_k , $\xi_{k,T}$ – длина и гидравлическое сопротивление трубопровода соответственно; c_p , λ – удельная теплоемкость и коэффициент теплопроводности жидкости; α_k – коэффициент теплообмена с внешней средой.

Гидравлическое сопротивление трубопровода включает сопротивление трению движущейся жидкости и местные гидравлические сопротивления ξ_{M_i} , обусловленные наличием регулирующей аппаратуры – ручных задвижек, клапанов и т. д.:

$$\xi_{k,T} = \frac{\xi_k l_k}{d_k} + \sum_i \xi_{M_i},$$

где d_k – диаметр *k*-го расчетного участка, а коэффициент гидравлического сопротивления зависит от режима течения [7]:

$$\xi_{k} = \begin{cases} 64/\operatorname{Re}_{k}, & \operatorname{Re}_{k} \leq 2320; \\ 0,316/\operatorname{Re}_{k}^{0.25}, & \operatorname{Re}_{k} > 2320. \end{cases}$$

Здесь $\operatorname{Re}_{k} = \frac{|v_{k}|d_{k}}{v}$ – число Рейнольдса; v – кинематическая вязкость.

Разветвление трубопроводов. В разветвлении трубопроводов задаются условия сопряжения, выражающие законы сохранения массы и количества тепла:

$$\sum_{k \in \mathcal{Y}_{(q)}^{+}} f_k v_k - \sum_{k \in \mathcal{Y}_{(q)}^{+}} f_k v_k = 0;$$
(3)

$$\sum_{k\in\gamma_{(q)}^{*}} f_k \left(c_p \rho v_k T_k - \lambda \frac{\partial T_k}{\partial x_k} \right) \bigg|_{x_k = l_k} = \sum_{k\in\gamma_{(q)}^{-}} f_k \left(c_p \rho v_k T_k - \lambda \frac{\partial T_k}{\partial x_k} \right) \bigg|_{x_k = 0},$$
(4)

и условия примыкания для давлений и температур

$$p_{k}^{-}(t) = p_{(q)}(t), \ k \in \gamma_{(q)}^{-}; \quad p_{k}^{+}(t) = p_{(q)}(t), \ k \in \gamma_{(q)}^{+};$$
(5)

$$T_{(q)}(t) = T_k(0,t), \ k \in \gamma_{(q)}^-; \quad T_{(q)}(t) = T_k(l_k,t), \ k \in \gamma_{(q)}^+.$$
(6)

Здесь $f_k = 0,25\pi d_k^2$ – площадь поперечного сечения *k*-го трубопровода; $p_{(q)}(t)$, $T_{(q)}(t)$ – узловые давления и температуры.

Насосы H370NA, H370NB. Центробежный насос описывается уравнением

$$p_{H}^{+} - p_{H}^{-} = \omega^{2} \rho K - \rho \xi_{k,H} \frac{|v_{k}|v_{k}}{2}, \qquad (7)$$

где p_{H}^{-} , p_{H}^{+} – давления на входе и выходе насоса; ω – угловая скорость вращения вала; $\xi_{k,H}$ – коэффициент гидравлического сопротивления; K – коэффициент, задающий напорную характеристику насоса. Здесь первый член в правой части уравнения описывает гидравлический напор, а второй – гидравлическое сопротивление насоса.

Ручные и электрозадвижки. Местное гидравлическое сопротивление трубопровода, обусловленное наличием задвижки, определяется в зависимости от процента ее открытия по формуле

$$\xi_M = \xi_{om\kappa} \left(100/h \right)^2,$$

где ξ_{omk} – коэффициент гидравлического сопротивления задвижки при полном ее открытии; h – процент открытия.

Клапаны FV, PV, LV. В режиме автоматического регулирования алгоритм управления клапаном определяется из следующего дифференциального уравнения PID-регулятора, задающего процент открытия клапана как

$$\frac{dh}{dt} = \beta_0 e + \beta_1 \frac{de}{dt} + \beta_2 \int e dt,$$
(8)

где $e(t) = F(t) - F_0$ – отклонение текущего значения F(t) расхода, давления или уровня от заданного значения (уставки) F_0 ; константы $\beta_0, \beta_1, \beta_2$ – настраиваемые параметры PIDрегулятора.

Предохранительные клапаны. Функционирование предохранительного клапана описывается уравнением (8), где $e(t) = \Delta p(t) - \Delta p_0$ – отклонение текущего значения перепада давления на клапане $\Delta p = p^+ - p^-$ от давления настройки Δp_0 .

Пароперегреватель печи Π -351N. Процессы тепло- и массопереноса в пароперегревателе описываются уравнениями (1), (2), где в качестве внешней температуры T_{out} берется температура дымовых газов печи Π -351N.

Рибойлеры T-351N, T-356N. Основным компонентом математической модели парогенерирующего узла является модель тепловых и гидравлических процессов в рибойлере. Она строится на основе уравнений баланса массы и энергии. Пусть γ_{R_o} , γ_{R_o} – множества номеров примыкающих к рибойлеру трубопроводов питательной и паровой магистралей соответственно.

Уравнения баланса массы для воды и пара в рибойлере имеют вид

$$\frac{dM_{\omega}}{dt} = G_{\omega}^{in} - G_{\omega}^{out} - G_{ev};$$
⁽⁹⁾

$$G_{\omega}^{in} = \sum_{k \in \gamma_{R_{\omega}}^{+}} \rho_{\omega} f_{k} v_{k}^{+} - \sum_{k \in \gamma_{R_{\omega}}^{-}} \rho_{\omega} f_{k} v_{k}^{-}; G_{\omega}^{out} = -\sum_{k \in \gamma_{R_{\omega}}^{+}} \rho_{\omega} f_{k} v_{k}^{-} + \sum_{k \in \gamma_{R_{\omega}}^{-}} \rho_{\omega} f_{k} v_{k}^{+};$$

$$\frac{dM_{\upsilon}}{dt} = G_{\upsilon}^{in} - G_{\upsilon}^{out} + G_{e\upsilon};$$

$$G_{\upsilon}^{in} = \sum_{k \in \gamma_{R_{\upsilon}}^{+}} \rho_{\upsilon} f_{k} v_{k}^{+} - \sum_{k \in \gamma_{R_{\upsilon}}^{-}} \rho_{\upsilon} f_{k} v_{k}^{-}; \quad G_{\upsilon}^{out} = -\sum_{k \in \gamma_{R_{\upsilon}}^{+}} \rho_{\upsilon} f_{k} v_{k}^{-} + \sum_{k \in \gamma_{R_{\upsilon}}^{-}} \rho_{\upsilon} f_{k} v_{k}^{+},$$

$$(10)$$

где M_{ω}, M_{υ} – массы воды и масса пара в рибойлере; $G_{\omega}^{in}, G_{\omega}^{out}$ – массовые потоки воды по питательной магистрали; $G_{\upsilon}^{in}, G_{\upsilon}^{out}$ – массовые потоки пара по паровой магистрали; $G_{e\upsilon}$ – массовый расход воды на испарение-конденсацию. Здесь и далее использованы следующие обозначения: $F^{+} = 0.5(F + |F|), F^{-} = 0.5(F - |F|)$. Массовый расход воды на испарение-конденсацию определяется по формуле

 $G_{ev} = k_{ev} \left(P_{S} \left(T_{\omega} \right) - P \right)^{+} - k_{cond} \left(P - P_{S} \left(T_{\upsilon} \right) \right)^{+},$

где k_{ev} , k_{cond} – скорости испарения и конденсации; P – давление в паровой камере рибойлера, а зависимость давления насыщенных паров воды от температуры $P_{s}(T)$ рассчитывается по уравнению Максвелла [8]

$$P_{S}(T) = P_{C} \cdot 10^{-G\frac{T_{C}}{T} \left[1 - \left(\frac{T}{T_{C}}\right)^{2} + g\left(1 - \frac{T}{T_{C}}\right)^{3}\right]},$$
$$g = \frac{\left[\frac{h}{G} - \left(1 + \frac{T_{b}}{T_{C}}\right)\right]}{\left(1 - \frac{T_{b}}{T_{C}}\right)^{2}}, \quad h = \frac{T_{b}}{T_{C}} \frac{\lg(P_{C} \cdot 10)}{1 - \frac{T_{b}}{T_{C}}}, \quad G = 0,2271 + 0,4525h.$$

где

Здесь T_b – температура кипения воды при нормальных условиях, а T_C и P_C – ее критические температура и давление.

Запишем уравнения баланса энергии для воды и пара:

$$c_{\omega}M_{\omega}\frac{dT_{\omega}}{dt} = \alpha \left(M_{\omega}, G_{np}\right) \left(T_{np} - T_{\omega}\right) - L_{\nu}G_{e\nu} + c_{\omega}G_{\omega}^{in}\left(T_{\omega}^{in} - T_{\omega}\right) + \alpha_{\omega\nu}\left(T_{\nu} - T_{\omega}\right); \tag{11}$$

$$c_{\nu}M_{\nu}\frac{dT_{\nu}}{dt} = c_{\nu}G_{\nu}^{in}T_{\nu}^{in} - c_{\nu}G_{\nu}^{out}T_{\nu} - \alpha_{\omega\nu}\left(T_{\nu} - T_{\omega}\right),\tag{12}$$

где T_{ω}, T_{ν} – температуры воды и пара в рибойлере; c_{ω}, c_{ν} – теплоемкости воды и пара; T_{np} – температура нефтепродуктов; L_{ν} – скрытая теплота парообразования; $T_{\omega}^{in}, T_{\nu}^{in}$ – температуры воды в питательной магистрали и пара в паровой магистрали.

Функция $\alpha(M_{\omega}, G_{np})$, определяющая коэффициент теплоотдачи от горячих нефтепродуктов к воде, задается как

$$\alpha(M_{\omega},G_{np})=(\alpha_1+\alpha_2G_{np})M_{\omega},$$

где α_1 , α_2 – эмпирические константы; G_{np} – массовый расход продуктов.

Значение давления P в паровой камере рибойлера используется в качестве краевого условия для уравнений гидравлики пара в паровых магистралях, а давление $P + \rho g_0 H$ – в качестве краевого условия для уравнений гидравлики жидкости в питательной магистрали. Здесь g_0 – ускорение свободного падения, H – уровень воды в рибойлере.

В висячих вершинах гидравлической сети в качестве краевых условий задаются значения давлений

$$p_1^- = p_B; \ p_{15}^+ = p_{17}^+ = p_{18}^+ = p_{24}^+ = p_{25}^+ = p_{amm}; \ p_{47}^+ = p_{K351},$$

где p_B – давление воды в деаэраторе E-123; p_{amm} – атмосферное давление; p_{K351} – давление в колонне K-351. Для температур в висячих вершинах сети задаются краевые условия первого рода (температуры поступающей жидкости (пара)) или краевые условия второго рода в случае вытекающей жидкости.

В качестве начальных данных при t=0 задаются начальные значения скоростей $v_k(0) = 0$ и температур $T_k(x_k, 0) = T_{init}$.

2. Вычислительный алгоритм

Для решения систем дифференциальных уравнений (1), (2) на гидравлической сети с условиями сопряжения (3)–(6) будем использовать конечно-разностные методы. При построении вычислительного алгоритма для совместного решения задач сопряжения для уравнений гидравлики и теплопроводности на графах воспользуемся методом блочных итераций, который состоит из двух вложенных циклов: внутреннего цикла нахождения давлений и скоростей течения и внешнего цикла определения распределения температур в гидравлической сети. В исходной области $\Omega = \bigcup_{k \in \gamma} \Omega_k \times [0, T]$, где $\Omega_k = \{x_k : 0 \le x_k \le l_k\}$, введем разностную сетку $\omega_{h\tau} = \omega_h \times \omega_{\tau}$ с шагами h_k по пространственным переменным x_k и шагом τ по временной переменной t:

$$\omega_h = \left\{ x_{k,i+1} = x_{k,i} + h_k, i = \overline{0, N_k - 1}, x_{k,0} = 0, x_{k,N_k} = l_k \right\}; \quad \omega_\tau = \left\{ t_{j+1} = t_j + \tau, j = \overline{0, J - 1}, t_0 = 0, t_J = T \right\}.$$

На разностной сетке $\omega_{h\tau}$ аппроксимируем уравнения гидравлики (1) разностными соотношениями вида

$$l_{k}\rho v_{k,t} = \left(p_{k}^{-}\right)^{j+1} - \left(p_{k}^{+}\right)^{j+1} - \rho \xi_{k,T} \frac{\left|v_{k}^{j+1}\right| v_{k}^{j+1}}{2}, \quad k \in \gamma,$$
(13)

а уравнения теплопроводности (2) – неявными разностными схемами с регуляризатором [9]:

$$\rho c_{p} \left(T_{k,t} + \hat{v}_{k}^{+} \hat{T}_{k,\bar{x}} + \hat{v}_{k}^{-} \hat{T}_{k,x} \right) = \kappa \lambda \hat{T}_{k,x\bar{x}} - \alpha_{k} \left(\hat{T}_{k} - T_{out} \right), \ k \in \gamma;$$

$$\hat{v}_{k}^{+} = 0.5 \left(\hat{v}_{k} + \left| \hat{v}_{k} \right| \right), \ \hat{v}_{k}^{-} = 0.5 \left(\hat{v}_{k} - \left| \hat{v}_{k} \right| \right), \ \kappa = \frac{1}{1+R}, \ R = \frac{h_{k} \left| \hat{v}_{k} \right|}{2\lambda} \rho c_{p}.$$

$$(14)$$

Здесь использованы стандартные обозначения теории разностных схем [9]

$$u = u_i^j = u(x_i, t_j); \quad \hat{u} = u_i^{j+1}; \quad u_t = \frac{\hat{u} - u}{\tau}; \quad u_{\bar{x}x} = \frac{u_{i+1}^j - 2u_i^j + u_{i-1}^j}{h^2}.$$

Разностные схемы (14) являются монотонными при любых τ , h и аппроксимируют исходные уравнения с погрешностью $O(\tau + h^2)$. Для реализации соотношений (13) будем использовать итерационный процесс

$$l_{k}\rho \frac{v_{k}^{s+1} - v_{k}^{j}}{\tau} = p_{k}^{-} - p_{k}^{+} - 0,5\rho \xi_{k,T} |v_{k}^{s}|^{s+1}$$
(15)

Уравнения (15) приводятся к виду

$$v_{k}^{s+1} = \kappa_{k} \left(p_{k}^{s+1} - p_{k}^{s+1} \right) + v_{k};$$
(16)

$$\kappa_{k} = \frac{\tau}{l_{k}\rho\psi_{k}}; \quad \nu_{k} = \frac{\nu_{k}^{j}}{\psi_{k}}; \quad \psi_{k} = 1 + \frac{\tau\xi_{k,T} |\nu_{k}|}{2l_{k}}$$

Для трубопроводов, содержащих насосы H370NA, H370NB, коэффициенты уравнения (16) с учетом аппроксимации уравнений (7)

$$p_{H}^{s+1} - p_{H}^{s+1} = \omega^{2} K - \rho \xi_{k,H} \frac{\left| \frac{v_{k}}{v_{k}} \right|^{s+1}}{2}$$

принимают вид

$$\kappa_{k} = \frac{\tau}{l_{k}\rho\psi_{k}}; \quad \nu_{k} = \frac{\nu_{k}^{j} + \tau\omega^{2}K/l_{k}\rho}{\psi_{k}}$$

Аппроксимируем условия сопряжения во внутренних вершинах гидравлической сети (разветвлении трубопроводов) следующей системой алгебраических уравнений:

$$\sum_{k \in \gamma_{(q)}^{-}} f_k v_k^{s+1} - \sum_{k \in \gamma_{(q)}^{+}} f_k v_k^{s+1} = 0, \ q \in \eta.$$
(17)

Подставляя (16) в (17) и учитывая условия примыкания (5), получим систему линейных уравнений относительно узловых давлений $p_{(q)}^{s+1}$

$$A_{p} \overset{s+1}{\mathbf{p}} = \mathbf{b}_{p}; \quad A_{p} = \left(a_{qw}, \quad q, w = \overline{1, n}\right); \quad \mathbf{p} = \left(p_{(1)}, \dots, p_{(n)}\right)'; \quad \mathbf{b}_{p} = \left(b_{(1)}, \dots, b_{(n)}\right)'; \quad (18)$$

$$a_{qq} = \sum_{k \in \gamma_{(q)}} f_{k} \kappa_{k}; \quad a_{qw} = -\sum_{k \in \gamma_{(q)} \cap k \in \gamma_{(w)}} f_{k} \kappa_{k}, \quad w \neq q;$$

$$b_{(q)} = \sum_{k \in \gamma_{(q)}^{+}} f_{k} v_{k} - \sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{T}^{-}} f_{k} \kappa_{k} p_{k}^{-} \left(t_{j+1}\right) + \sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{T}^{+}} f_{k} \kappa_{k} p_{k}^{+} \left(t_{j+1}\right), \quad q \in \eta.$$

Если гидравлическая сеть содержит висячие вершины ($\gamma_{\Gamma} \neq \emptyset$), то для q, таких, что $\gamma_{(q)} \bigcap \gamma_{\Gamma} \neq \emptyset$, справедливо неравенство

$$a_{qq} > \sum_{w \neq q} \left| a_{qw} \right|.$$

Следовательно, для матрицы A_p выполняется условие диагонального преобладания и система линейных уравнений (18) имеет решение.

На каждом шаге итерационного процесса в результате решения системы уравнений (18) определяются величины узловых давлений во внутренних вершинах гидравлической сети. Далее из системы уравнений (16) по найденным значениям $p_{(q)}^{s+1}$ находятся величины скоростей s+1

v_k в трубопроводах гидравлической системы. Выход из итерационного процесса происходит при выполнении условия

$$\begin{vmatrix} s+1 & s\\ v_k - v_k \end{vmatrix} < \varepsilon_1 v_k \begin{vmatrix} s\\ v_k \end{vmatrix} + \varepsilon_2,$$

где ε_1 , ε_2 – относительная и абсолютная точности определения скоростей течения. Найденные значения скоростей применяются для определения распределения температур в гидравлической сети на очередном шаге итерационного процесса по температурам.

Для реализации разностной схемы (14) используем итерационный процесс

$$\rho c_p \left(T_{k,\tau}^{m+1} + v_k^{m+1} T_{k,\bar{x}}^{m+1} + v_k^{-} T_{k,x}^{m+1} \right) = \kappa \lambda T_{k,\bar{x}x}^{m+1} - \alpha_k \left(T_k^{m+1} - T_{out} \right), \ k \in \gamma,$$
(19)

где в качестве скоростей v_k^{m+1} взяты значения v_k^{s+1} .

Системы линейных уравнений (19) приводятся к системам трехточечных уравнений

$$A_{k,i}T_{k,i-1}^{m+1} - C_{k,i}T_{k,i}^{m+1} + B_{k,i}T_{k,i+1}^{m+1} = -F_{k,i}, \ i = \overline{1, N_k - 1}, \ k \in \gamma;$$
(20)

$$A_{k,i} > 0, \ B_{k,i} > 0, \ C_{k,i} - A_{k,i} - B_{k,i} > 0.$$
 (21)

Для решения задачи сопряжения для систем трехточечных уравнений, заданных на графе *G*, будем использовать формулы правой и левой параметрических прогонок:

$$T_{k,i+1}^{m+1} = \theta_{11,k,i+1} T_{k,i}^{m+1} + \theta_{12,k,i+1} T_{k,N_k}^{m+1} + \theta_{13,k,i+1}, \ i = \overline{0, N_k - 1};$$
(22)

$$T_{k,i-1}^{m+1} = \theta_{21,k,i-1} T_{k,0}^{m+1} + \theta_{22,k,i-1} T_{k,i}^{m+1} + \theta_{23,k,i-1}, i = \overline{N_k, 1},$$
(23)

где прогоночные коэффициенты определяются по рекуррентным формулам [10] через коэффициенты уравнений (20), причем при выполнении условий (21) имеем

$$\theta_{11,k,i} > 0, \, \theta_{12,k,i} > 0, \, \theta_{11,k,i} + \theta_{12,k,i} < 1, \, \theta_{21,k,i} > 0, \, \theta_{22,k,i} > 0, \, \theta_{21,k,i} + \theta_{22,k,i} < 1.$$

$$(24)$$

Аппроксимируем условия сопряжения (4), (6) следующим образом:

$$T_{k,N_{k}}^{m+1} = T_{(q)}^{m+1}, \ k \in \gamma_{(q)}^{+}; \ T_{k,1}^{m+1} = T_{(q)}^{m+1}, \ k \in \gamma_{(q)}^{-};$$

$$\sum_{k \in \gamma_{(q)}^{+}} f_{k} \left(c_{p} \rho \left(\sum_{k=1}^{m+1} \sum_{k=$$

Полагая i = 0 в (22) и $i = N_k$ в (23), имеем

$$T_{k,1}^{m+1} = \theta_{11,k,1} T_{k,0}^{m+1} + \theta_{12,k,1} T_{k,N_k}^{m+1} + \theta_{13,k,1}, \ T_{k,N_k-1}^{m+1} = \theta_{21,k,N_k-1} T_{k,0}^{m+1} + \theta_{22,k,N_k-1} T_{k,N_k}^{m+1} + \theta_{23,k,N_k-1} T_{k,N_k}^$$

Подставляя выражения для $T_{k,1}^{m+1}$ и T_{k,N_k-1}^{m+1} в уравнение (26), получим

$$\begin{pmatrix}
\sum_{k \in \gamma_{(q)}^{+}} \left(e_{k}^{+} - g_{k}^{+} \theta_{22,k,N_{k}-1} \right) + \sum_{k \in \gamma_{(q)}^{-}} \left(e_{k}^{-} - g_{k}^{-} \theta_{11,k,1} \right) \right) T_{(q)}^{m+1} - \\
-\sum_{w\neq q}^{n} \left(\sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{(w)}^{-}} g_{k}^{+} \theta_{21,k,N_{k}-1} + \sum_{k \in \gamma_{(q)}^{-} \cap k \in \gamma_{(w)}^{+}} g_{k}^{-} \theta_{12,k,1} \right) T_{(w)}^{m+1} = \sum_{k \in \gamma_{(q)}^{+}} g_{k}^{+} \theta_{23,k,N_{k}-1} + \sum_{k \in \gamma_{(q)}^{-}} g_{k}^{-} \theta_{13,k,1}; \\
e_{k}^{+} = f_{k} \left(\frac{1}{h_{k}} - \frac{c_{p}\rho}{\lambda} \frac{m+1}{\nu_{k}} \right) > 0; \quad e_{k}^{-} = f_{k} \left(\frac{1}{h_{k}} + \frac{c_{p}\rho}{\lambda} \frac{m+1}{\nu_{k}} \right) > 0; \\
g_{k}^{+} = f_{k} \left(\frac{1}{h_{k}} + \frac{c_{p}\rho}{\lambda} \frac{m+1}{\nu_{k}^{+}} \right) > 0; \quad g_{k}^{-} = f_{k} \left(\frac{1}{h_{k}} - \frac{c_{p}\rho}{\lambda} \frac{m+1}{\nu_{k}^{-}} \right) > 0.
\end{cases}$$
(27)

Если в вершине с номером *w* задано краевое условие первого рода $w \in \Gamma_1$, то $T_{(w)}^{m+1} = T_k^{m+1}(t_{j+1})$. В случае $w \in \Gamma_2$, $k \in \gamma_{\Gamma_2}^-$ из аппроксимации краевого условия второго рода $-\lambda \frac{\partial T_k}{\partial x_k} = W_k(t)$ и формул правой параметрической прогонки получаем

$$T_{(w)}^{m+1} = T_{k,0}^{m+1} = \frac{\theta_{12,k,1}}{1 - \theta_{11,k,1}} T_{(q)}^{m+1} + \frac{\theta_{13,k,1} + h_k W_k (t_{j+1}) / \lambda}{1 - \theta_{11,k,1}}.$$

Подставляя выражения для $T_{(w)}^{m+1}$ в равенство (27), получим систему линейных уравнений относительно узловых температур

$$A_{T} \overset{m+1}{\mathbf{T}} = \mathbf{b}_{T}; \quad A_{T} = \left(a_{qw}, q, w = \overline{1, n}\right); \quad \mathbf{T} = \left(T_{(1)}, ..., T_{(n)}\right)'; \quad \mathbf{b}_{T} = \left(b_{1}, ..., b_{n}\right)'; \quad (28)$$

$$a_{qq} = \sum_{k \in \gamma_{(q)}^{+}} \left(e_{k}^{+} - g_{k}^{+} \theta_{22, k, N_{k} - 1}\right) + \sum_{k \in \gamma_{(q)}^{-}} \left(e_{k}^{-} - g_{k}^{-} \theta_{11, k, 1}\right) - \sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{T_{2}}^{-}} g_{k}^{+} \frac{\theta_{21, k, N_{k} - 1} \theta_{12, k, 1}}{1 - \theta_{11, k, 1}} - \sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{T_{2}}^{-}} g_{k}^{-} \frac{\theta_{21, k, N_{k} - 1} \theta_{12, k, 1}}{1 - \theta_{22, k, N_{k} - 1}}; \quad a_{qw} = -\sum_{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{(w)}^{-}} g_{k}^{+} \theta_{21, k, N_{k} - 1} - \sum_{k \in \gamma_{(q)}^{-} \cap k \in \gamma_{(w)}^{-}} g_{k}^{-} \theta_{12, k, 1}.$$

Учитывая свойства (24) коэффициентов параметрической прогонки и

$$e_k^+ = g_k^+ - \frac{c_p \rho}{\lambda} f_k v_k^{m+1}; \quad e_k^- = g_k^- + \frac{c_p \rho}{\lambda} f_k v_k^{m+1};$$

можно показать, что для матрицы A_T выполняется условие диагонального преобладания

$$a_{qq} > \sum_{\substack{w=1\\w\neq q}}^{n} \left(\sum_{\substack{k \in \gamma_{(q)}^{+} \cap k \in \gamma_{(w)}^{-}}} g_{k}^{+} \theta_{21,k,N_{k}-1} + \sum_{\substack{k \in \gamma_{(q)}^{-} \cap k \in \gamma_{(w)}^{+}}} g_{k}^{-} \theta_{12,k,1} \right) = \sum_{\substack{w=1\\w\neq q}}^{n} \left| a_{qw} \right|$$

и система (28) имеет решение.

Нейстеля (22) плете решения системы линейных уравнений (28) узловые температуры $T_{(1)}^{m+1}, T_{(2)}^{m+1}, ..., T_{(n)}^{m+1}$ используются в качестве краевых условий для определения распределения

температур на ребрах графа *G* по формулам параметрической прогонки (22) или (23). Полученные скорости течения и распределения температур в гидравлической сети далее используются для нахождения температур и давлений жидкости и пара в рибойлерах.

Из аппроксимации уравнений баланса массы (9), (10) определяем массы воды и пара

где

Из решения системы двух разностных уравнений

$$c_{\omega} M_{\omega}^{m+1} \frac{T_{\omega}^{m+1} - T_{\omega}^{j}}{\tau} = \alpha \left(M_{\omega}^{m+1}, G_{np}\left(t_{j+1}\right) \right) \left(T_{np}\left(t_{j+1}\right) - T_{\omega}^{m+1} \right) - L_{\nu} G_{e\nu}^{m+1} + c_{\omega} G_{\omega}^{m+1} \left(T_{\omega}^{m+1} - T_{\omega}^{m+1} \right) + \alpha_{\omega\nu} \left(T_{\nu}^{m+1} - T_{\omega}^{m+1} \right); \quad (30)$$

$$c_{\nu} M_{\nu}^{m+1} \frac{T_{\nu}^{-} - T_{\nu}^{j}}{\tau} = c_{\nu} G_{\nu}^{m+1} T_{\nu}^{m+1} - c_{\nu} G_{\nu}^{m+1} T_{\nu}^{m+1} - \alpha_{\omega\nu} \left(T_{\nu}^{m+1} - T_{\omega}^{m+1} \right), \quad (31)$$

аппроксимирующих уравнения баланса энергии (11), (12), находим значения температур воды и пара $T_{\omega}^{m+1}, T_{\nu}^{m+1}$. Давление и плотность пара в паровой камере рибойлера определяются по формулам

$$P^{m+1} = R_{\upsilon} T_{\upsilon} \rho_{\upsilon}, \quad \rho_{\upsilon} = M_{\upsilon} / \left(V_{R} - M_{\omega}^{m+1} / \rho \right),$$

где R_v – газовая постоянная для водяного пара; V_R – объем рибойлера.

3. Вычислительный эксперимент

Для апробации предложенного алгоритма проведен вычислительный эксперимент по моделированию процессов тепло- и массопереноса в узле выработки пара. Моделировался следующий сценарий пуска в эксплуатацию рибойлера T-351N. С помощью насосов H370NA, H370NB вода с температурой 100 °C из деаэратора E-123 подавалась в рибойлер. После заполнения рибойлера на 80 % подача воды прекращалась перекрытием задвижки на питательной магистрали. Масса воды в рибойлере составила 32,5 т. В момент времени t = 0 включалась подача горячих ($T_{np} = 244$ °C) нефтепродуктов из колонны K-351N, приводящая к росту температуры воды, температуры и давления пара в паровом пространстве рибойлера (рис. 2). После достижения избыточного давления 5 кгс/см² в момент времени t = 1,05 ч открывалась задвижка в паровой линии и пар поступал в паровую магистраль. При этом снижалось давление в рибойлере, уменьшалась температура воды за счет ее испарения, а температура пара вначале повышалась, сравниваясь с температурой воды, а затем падала вместе с ней (см. рис. 2 в интервале времени 1,05 – 1,25 ч).

Далее налаживалась циркуляция питательной воды: открывалась задвижка на питательной магистрали и дренажный вентиль в продувочной линии. При этом клапан LV0003, регулирующий уровень воды в T-351N, переводился в автоматический режим поддержания заданного

уровня (80 %). Поддержание уровня воды в T-351N осуществлялось автоматическим изменением процента открытия клапана LV0003, приводящим к пульсациям подачи воды, что отображается на рис. 3 пилообразной формой кривой ее расхода (кривая 1). Клапан-регулятор давления PV0035 настроен на поддержание в паровой магистрали давления 4,5 кгс/см². При снижении давления ниже заданного срабатывал клапан PV0035, и в дальнейшем оба клапана LV0003 и PV0035 работали в автоматическом режиме.

Рис. 2. Изменение температуры жидкости, давления и температуры пара: $1 - T_{\omega}$; $2 - T_{\nu}$; 3 - P

Рис. 3. Массовые расходы питательной жидкости и пара: 1 – G_{ω}^{in} ; 2 – G_{ω}^{out} ; 3 – G_{υ}^{out}

Изменение со временем массового расхода воды на испарение показано на рис. 4. В течение первого часа наблюдается слабый расход воды на испарение, приводящий к повышению давления в паровом пространстве рибойлера, при открытии паровой магистрали он скачкообразно увеличивается за счет поступления пара в паровую магистраль, затем плавно уменьшается за счет падения температуры и давления в рибойлере. После этого наступает небольшой провал, связанный с налаживанием циркуляции воды, а также с достижением давления в рибойлере величины срабатывания клапана РV0035 и установлением автоматического регулиро-

вания давления за счет управления расходом пара. Затем в результате работы автоматики устанавливается стабильный расход пара с небольшими колебаниями около среднего значения.

Рис. 4. Массовый расход воды на испарение G_{en}

Компьютерное моделирование проводилось с помощью программных модулей, реализованных в среде программирования Delphi 5. Скорости течения в трубопроводах вычислялись по формулам (16) после определения узловых давлений из системы линейных уравнений (18), а распределения температур – по формулам (22) после решения системы (28). Для нахождения массы и температуры воды и пара в рибойлере использовались уравнения (29)–(31).

При проведении вычислительного эксперимента полагалось $\varepsilon_1 = 0,01, \varepsilon_2 = 0,001$ м/с. Шаг интегрирования по времени варьировался в зависимости от числа итераций *s*, необходимых для достижения заданной точности определения скоростей течения. Если *s* > 6, то шаг τ уменьшался на 50 %, а если на протяжении 100 шагов по времени заданная точность достигалась за одну-две итерации, то шаг τ увеличивался на 5 %. Максимальное значение шага ограничивалось величиной $\tau_{max} = 0,1$ с. При этом время счета на процессоре Pentium 4 с тактовой частотой 2,6 ГГц составило порядка 11 мин.

Заключение

В статье представлены математические модели устройств узла выработки пара среднего давления установки гидроконверсии вакуумного газойля. Процессы тепло- и массопереноса описываются уравнениями гидравлики и конвективного теплообмена, заданными на ориентированном графе. Для решения возникающей задачи сопряжения для системы дифференциальных уравнений на базе неявных конечно-разностных методов построены вычислительные алгоритмы. Показана разрешимость полученных систем алгебраических уравнений для определения узловых давлений и температур на каждом шаге итерационного процесса.

Приведены результаты вычислительного эксперимента по математическому моделированию процессов испарения, тепло- и массопереноса в узле выработки пара при пуске рибойлера в эксплуатацию. Полученные данные соответствуют данным технологического регламента.

Предложенные вычислительные алгоритмы и соответствующие программные модули включены в состав динамического тренажера для подготовки операторов установки гидроконверсии вакуумного газойля Мозырского нефтеперерабатывающего завода.

Список литературы

1. Магид, С.И. Теория и практика тренажеростроения для тепловых электрических станций / С.И. Магид. – М.: Изд-во МЭИ, 1998. – 154 с.

2. Александров, И.А. Перегонка и ректификация в нефтепереработке / И.А. Александров. – М.: Химия, 1981. – 352 с.

3. Гидравлические цепи. Развитие теории и приложения / Н.Н. Новицкий [и др.]. – Новосибирск: Наука, 2000. – 273 с.

4. Samani, H.M.A. Transient flow in pipe networks / H.M.A. Samani, A. Khayatzadeh // J. Hydraulic Research. – Vol. 40, №5. – 2002. – P. 637–644.

5. Чуйко, М.М. Математическое моделирование течения жидкости в гидроприводах машин / М.М. Чуйко, В.Д. Захарцева // Инженерно-физический журнал. – Т. 71, № 2. – 1998. – С. 323–326.

6. Справочник по теплообменникам. Т.1. – М.: Энергоатомиздат, 1987. – 560 с.

7. Кутателадзе, С.С. Основы теории теплообмена / С.С. Кутателадзе. – Новосибирск: Наука, 1970. – 658 с.

8. Рид, Р. Свойства газов и жидкостей / Р. Рид, Т. Шервуд. – М.: Химия, 1971. – 704 с.

9. Самарский, А.А. Теория разностных схем / А.А. Самарский. – М.: Наука, 1983. – 616 с.

10. Фрязинов, И.В. Алгоритм решения разностных задач на графах / И.В. Фрязинов // ЖВМ и МФ. – 1970. – Т. 10, № 2. – С. 474–377.

Поступила 26.12.06

¹ОАО Мозырский НПЗ, Мозырь-11, Гомельская обл.

²Институт математики НАН Беларуси, Минск, Сурганова, 11 e-mail: chuiko@im.bas-net.by

³Институт тепло- и массообмена НАН Беларуси им. А.В. Лыкова, Минск, П.Бровки, 15

O.N. Gaiduk, O.M. Korolyova, M.M. Chuiko, A.I. Shnip

MATHEMATICAL MODELLING THE STEAM PRODUCTION IN THE PLANT OF VACUUM GASOIL HYDROCONVERSION

A numerical algorithm for calculation of nonisothermal pressurized flows in hydraulic net of steam production is presented. The model of incompressible fluid is used. The algorithm is based on implicit finite difference approximation of heat and mass transfer equations. Solvability of obtained systems of linear equations is proved. The results of computational experiment are presented.