2011 октябрь-декабрь № 4

УДК 621.391

А.А. Борискевич, А.В. Антончик

БЫСТРОЕ СЖАТИЕ ИЗОБРАЖЕНИЙ С ПРОСТРАНСТВЕННО-БЛОЧНЫМ КОДИРОВАНИЕМ ГОЛОМБА – РАЙСА

Предлагается блочный алгоритм быстрого сжатия изображений без потерь с пространственно-кодовой адаптацией, основанный на использовании двухпороговой маски предсказания с установленными порогами, адаптивно-блочного кодирования Голомба — Райса и снижения избыточности с помощью коэффициента относительного изменения параметра кода Голомба — Райса. Результаты моделирования алгоритма для полутоновых и цветных изображений показали высокую эффективность сжатия (1,6–1,75) при низкой вычислительной сложности.

Введение

Алгоритмы сжатия без потерь используются для многих классов изображений: медицинских, микро- и наноскопических, спутниковых, аэрофотографических, астрономических и т. п. В настоящий момент существует целый ряд стандартов и методов, позволяющих сжимать без потерь полутоновые и цветные статические изображения: Lossless JPEG, JPEG2000 Lossless, JPEG-LS, нестандартизованные алгоритмы сжатия CALIC, FELICS и т. д. [1–6]. Спектр приложения изображений определяет степень значимости критериев, определяющих эффективность алгоритма сжатия: коэффициента сжатия, скорости компрессии и декомпрессии, устойчивости к ошибкам, стоимости аппаратной и программной реализации.

Для сжатия изображений без потерь одним из наиболее оптимальных решений в понятиях критериев эффективности алгоритма является использование пространственных методов, основанных на применении предсказания. Анализ методов сжатия изображений в пространственной области показывает, что существует множество различных предсказателей и энтропийных кодеров. Это обусловлено отсутствием методов оптимального синтеза маски предсказания с максимальным отношением точность предсказания/вычислительная сложность и сложностью адаптации энтропийных кодов к источнику информации с произвольным распределением вероятностей.

Целью работы является разработка эффективных блочных кодово-адаптивных методов пространственного сжатия с использованием префиксных кодов Голомба — Райса.

1. Модель предсказателя изображения

Кодирование без потерь с предсказанием основано на устранении пространственно-кодовой избыточности элементов изображения I. Для этого выполняется предсказание текущих пикселов $I_{i,j}$, $i=\overline{0,N-1}$, $j=\overline{0,M-1}$, исходного изображения по пикселам их окрестности $\Omega_{i,j}$ размером $K\times (L_1+L_2+1)$:

$$\Omega_{i,j} = \begin{pmatrix}
I_{i-K-1,j-L_1} & \cdots & I_{i-K-1,j} & \cdots & I_{i-K-1,j+L_2} \\
\vdots & & \vdots & & \vdots \\
I_{i-1,j-L_1} & \cdots & I_{i-1,j} & \cdots & I_{i-1,j+L_2} \\
I_{i,j-L_1} & \cdots & I_{i,j} & \cdots & I_{i,j+L_2}
\end{pmatrix}.$$
(1)

Обобщенное предсказание значения пиксела $I_{i,j}$ можно представить в виде функционала $F(\cdot)$, значение которого зависит от выбора маски предсказания $A(\Omega_{i,j})$ и окрестности предсказания $\Omega_{i,j}$:

$$\widetilde{I}_{i,j} = F(A(\Omega_{i,j}) * \Omega_{i,j}), \tag{2}$$

где $\tilde{I}_{i,j}$ — значение предсказанного пиксела; $A\left(\Omega_{i,j}\right) = \left\{a_{i+k,j+l} \middle| k = \overline{0,K-1},\ j = \overline{-L_1,L_2}\right\}$ — маска предсказания с весовыми коэффициентами $a_{i+k,j+l}$ для окрестности $\Omega_{i,j}$; * — символ оператора поточечного произведения матриц.

Значения функционала $F = (F_{\xi}(A, \Omega, d) | \xi \in \{1, \xi_N\})$ определяются с помощью соотношения

$$F_{\xi}(A,\Omega,d) = F\left(A_{C_{\xi}}(\Omega_{i,j}) * \Omega_{i,j} \middle| d\left(C_{\xi},\Omega_{i,j}\right) \forall \xi \in \{1,\xi_{N}\}\right), \tag{3}$$

где C_{ξ} – ξ -й контекст или его параметрическое задание, характеризующее условие вычисления предсказанного значения $\tilde{I}_{i,j}$; $A_{C_{\xi}}\left(\Omega_{i,j}\right)$ – маска коэффициентов предсказания для окрестности $\Omega_{i,j}$ текущего пиксела $I_{i,j}$ и выбранного контекста C_{ξ} ; $d\left(C_{\xi},\Omega_{i,j}\right)$ – целевая функция принятия решения для выбора контекста C_{ξ} из набора $\left\{C_{\xi}\right\}_{\xi=1}^{\xi_{N}}$ и соответствующих коэффициентов предсказания с целью достижения оптимального соотношения между точностью предсказания и вычислительной сложностью.

Из соотношений (2) и (3) видно, что точность предсказания зависит от точности моделирования окрестности, т. е. от количества и качества аппроксимации контекстов, по которым выбирается маска $A\left(\Omega_{i,j}\right)$. Высокоэффективные методы предсказания позволяют добиться снижения разброса между исходными и предсказанными значениями и увеличить степень сжатия. Однако улучшение точности предсказания ведет к значительному росту вычислительной сложности. Задача оптимизации вычислительной сложности и снижения скорости передаваемого потока особенно актуальна в космических и наземных приложениях.

2. Алгоритм быстрого сжатия изображений без потерь на основе пространственно-кодовой адаптации

Алгоритм быстрого сжатия изображений без потерь на основе пространственно-кодовой адаптации состоит из следующих шагов:

Шаг 1. Предсказание исходного изображения.

Предсказатель с масками весовых коэффициентов $A\left(\Omega_{i,j}\right) = \left\{(0,1,0)\lor(0,0,1)\lor\left(0,\frac{1}{2},\frac{1}{2}\right)\right\}$ и двухпороговым контекстом C_ξ , определяющим условия выбора весовых коэффициентов, позволяет учитывать вертикальный и горизонтальный градиенты окрестности $\Omega_{i,j}$. Значение предсказанного пиксела $\widetilde{I}_{i,j}$ вычисляется с помощью соотношения

$$\tilde{I}_{i,j} = \begin{cases} I_{i,j-1}, \text{ если } \left| I_{i,j-1} - I_{i-1,j-1} \right| > \theta_b, \ \left| I_{i-1,j} - I_{i-1,j-1} \right| < \theta_s; \\ I_{i-1,j}, \text{ если } \left| I_{i-1,j} - I_{i-1,j-1} \right| > \theta_b, \ \left| I_{i,j-1} - I_{i-1,j-1} \right| < \theta_s; \\ \left| \frac{I_{i,j-1} + I_{i-1,j}}{2} \right| \text{ в других случаях}, \end{cases}$$

$$(4)$$

где θ_b и θ_s – верхнее и нижнее пороговые значения градиентного параметра. Для окрестности с исходными пикселами A, B, C и предсказываемым пикселом X (рис. 1) соотношение (4) принимает вид

$$X = \begin{cases} A, \text{ если } |A - C| > \theta_b, |B - C| < \theta_s; \\ B, \text{ если } |B - C| > \theta_b, |A - C| < \theta_s; \\ \left\lfloor \frac{A + B}{2} \right\rfloor \text{ в других случаях.} \end{cases}$$
 (5)

С	В
Α	Χ

Рис. 1. Окрестность трехточечного градиентного предсказателя с двухпороговым контекстом

Шаг 2. Вычисление разностного изображения.

При вычислении разностного изображения (рис. 2, a) по обобщенному выражению (2) выполняется сканирование исходного изображения (рис. 2, a). Для окрестности (1) сканирование выполняется в направлении сверху вниз и слева направо, начиная от пикселя $\tilde{I}_{1,1}$, т. е. $i=\overline{1,M-1}$, $j=\overline{1,N-1}$. При этом возникает необходимость отдельной обработки левого столбца и верхней строки для формирования разностного изображения. Следует отметить, что для уменьшения вычислительной сложности алгоритма сжатия можно передавать первую строку и столбец без кодирования. В предлагаемом алгоритме вычисление разностных изображений производится по выражениям $\tilde{I}_{0,j}=I_{1,j}-I_{0,j}$, $j=\overline{1,N-1}$, и $\tilde{I}_{i,0}=I_{i,1}-I_{i,0}$, $i=\overline{1,M-1}$. В этом случае требуется передача первого пиксела исходного изображения $I_{0,0}$.

Рис. 2. Результат предсказания в пространственной области: a) исходное изображение; $\delta)$ разностное

Шаг 3. Преобразование разностного изображения.

Для устранения кодовой избыточности разность предсказанного \tilde{I} и исходного I изображений кодируется энтропийным кодом. Разностное изображение $E=I-\tilde{I}$ обладает статистическими свойствами симметричного экспоненциального распределения. Для эффективного энтропийного сжатия универсальными кодами Голомба — Райса [7] значения вероятностей символов P_j целочисленной сжимаемой последовательности символов должны удовлетворять условию $P_0 \geq P_1 \geq P_2 \geq ...P_j \geq ...P_{2n-1}$ и подчиняться геометрическому закону $P_n = 1 - q^n$, где P_j — вероятность появления j-го значения символа; q — параметр распределения. Это гарантирует, что более вероятные символы будут закодированы более короткими кодовыми комбинациями.

Для формирования визуальной информации с односторонним геометрическим распределением выполняется преобразование разностного изображения E в положительное целочисленное изображение \widehat{E} :

$$\widehat{E}_{i,j} = f\left(E_{i,j}\right) = \begin{cases} 2 \cdot E_{i,j} & \text{при } E_{i,j} \ge 0; \\ 2 \cdot \left|E_{i,j}\right| - 1 & \text{при } E_{i,j} \le 0. \end{cases}$$
(6)

Изображение \hat{E} имеет приблизительно статистические свойства одностороннего геометрического распределения, что позволяет эффективно использовать коды Голомба — Райса.

Шаг 4. Формирование вектора разностного изображения.

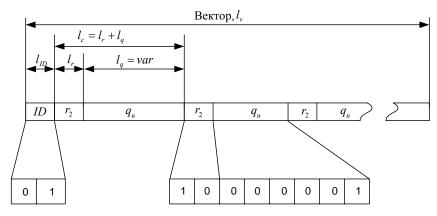
Преобразованное разностное изображение \vec{E} имеет высокую пространственную избыточность. Для ее уменьшения используется блочно-адаптивное статистическое кодирование, обладающее высокой чувствительностью к вариации значений разностных пикселов в пределах блока (вектора) и позволяющее почти оптимально кодировать каждый вектор.

Формирование векторов осуществляется из последовательности пикселов разностного изображения $\{\widehat{E}_n\}$, полученной посредством его вертикально-горизонтального сканирования:

$$\left\{\widehat{E}_{n}\right\} = \left\{\widehat{E}_{i,j} \middle| i = \overline{0, N-1}, \ j = \overline{0, M-1}, \ n = ij, \ n = \overline{0, NM}\right\}. \tag{7}$$

Поток сформированных векторов $\left\{\vec{x}_{t}\right\}_{t=1}^{T}$ определяется системой

$$\begin{cases} \vec{x}_t = (\hat{E}_n, ..., \hat{E}_{n+S-1}); \\ T = ceil\left(\frac{NM}{S}\right), \end{cases}$$


где S — размер или количество компонент вектора; ceil() — символ операции округления с избытком; T — общее число кодируемых векторов изображения; t — номер вектора (блока). При $T \mod S \neq 0$ выполняется дополнение вектора \vec{x}_T нулями до размерности S.

Шаг 5. Адаптивное энтропийное кодирование Голомба – Райса.

При кодировании компоненты блока (символа) \widehat{E}_n префиксным кодом Голомба — Райса компонента представляется в виде $\widehat{E}_n = q \cdot m + r$, где q и r — целые неотрицательные числа; $m = 2^k$ — делитель; k — параметр расщепления, задающий вид распределения кода. Значение q кодируется унарным кодом, остаток от деления r представляется в бинарной форме. Кодовое слово имеет вид $(r_2 \mid q_u)$, где r_2 — двоичное представление числа r; q_u — унарное представление числа q . Кодовые слова для первых восьми символов, кодированных различными кодами Голомба — Райса, приведены в табл. 1. Длина кодового слова l_c^k , соответствующего значению \widehat{E}_n при кодировании с параметром k, определяется соотношением $l_c^k = l_r + l_q^k$ бит, где $l_r = k$ — битовая длина r_2 ; $l_q^k = \frac{\widehat{E}_n}{2^k} + 1$ — битовая длина q_u .

Значение	Значение параметра кода					
символа \widehat{E}_n	k = 0	<i>k</i> = 1	<i>k</i> = 2	<i>k</i> = 3	<i>k</i> = 4	<i>k</i> = 5
0	1	0 1	00 1	000 1	0000 1	00000 1
1	01	1 1	01 1	001 1	0001 1	00001 1
2	001	0 01	10 1	010 1	0010 1	00010 1
3	0001	1 01	11 1	011 1	0011 1	00011 1
4	00001	0 001	00 01	100 1	0100 1	00100 1
5	000001	1 001	01 01	101 1	0101 1	00101 1
6	0000001	0 0001	10 01	110 1	0110 1	00110 1
7	00000001	1 0001	11 01	111 1	0111 1	00111 1

При блочно-адаптивном кодировании потока векторов (блоков) $\left\{\vec{x}_t\right\}_{t=1}^T$ для каждого \vec{x}_t выполняется поиск параметра кода k_t , при котором обеспечивается максимальное сжатие: k_t = arg min l_v . Длина l_{vk} любого кодированного вектора (рис. 3) определяется соотношением $l_{vk} = l_{ID} + \sum\limits_{d=1}^{S} l_c^{k,d}$, где $l_{ID} = ceil\left(log_2\left(k+1\right)\right)$ – битовая длина идентификатора кода вектора; $l_c^{k,d}$ – битовая длина d-го кодового слова с параметром k.

Идентификатор кода

Закодированное значение компоненты вектора

Рис. 3. Структура кодированного вектора длиной l_v при блочно-адаптивном кодировании изображения

Адаптация кодов Голомба к источнику изображения может достигаться несколькими способами. В методе полного поиска выполняется параллельное кодирование блока несколькими кодами Голомба — Райса. По результатам кодирования выбирается код с минимальной длиной.

Вычисление кумулятивной суммы бит бинарного представления компоненты \widehat{E}_n позволяет оценить величину \widehat{E}_n и выбрать параметр k, пропорциональный \widehat{E}_n , при допущении, что вероятности появления наименее значимых бит \widehat{E}_n подчинены равномерному закону.

Метод кодового предсказания (адаптации) является наиболее эффективным в случае, если между блоками сохраняется высокая корреляция. В этом случае для кодирования выбираются коды с параметром $k_t = k_{t-1} + \delta_t$, $k_0 = 0$, где k_0 — инициализирующий параметр; $\delta_t \in \left\{ \delta_i \, \middle| \, \rho_{\delta_i} \geq \Theta \right\}$ — квазиоптимальное значение параметра относительного изменения k_t ; ρ_{δ_i} — априорные вероятности события $\left\{ \delta_t = \delta_i \, \middle| \, \arg\min_k l_{v,k} \right\}$; Θ — квазивероятностный порог адаптации кода, величина которого определяет точность адаптации к статистике изображения. Из гистограммы параметра δ_t для изображения Lena видно, что параметр k сохраняет высокую корреляцию (рис. 4).

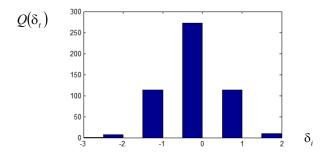


Рис. 4. Гистограмма $Q(\delta_t)$ появления δ_t для значения текущего оптимального параметра k_t относительного предыдущего k_{t-1} при кодировании изображения Lena

Величину корреляций $\{\delta_t\}$ можно оценить посредством гистограммы $Q(\delta_t)$ относительного изменения $\{\delta_t\} = \{k_t - k_{t-1}\}$ оптимального параметра k. Из рис. 4 видно, что более 95 % оптимальных δ_t принадлежат диапазону $\begin{bmatrix}k_{t-1}-1;k_{t-1}+1\end{bmatrix}$. Следовательно, наиболее обоснованным будет использование трех значений k_t : $k_{t-1}-1$, k_{t-1} или $k_{t-1}+1$.

Таким образом, кодовая адаптация обеспечивается за счет учета пространственностатистической корреляции разностного изображения и вычисления квазиоптимального параметра кода k_r , для каждого вектора \vec{x}_r .

3. Результаты моделирования

Результаты моделирования показывают, что выбор значений θ_b и θ_s двухпорогового градиентного предсказателя может осуществляться с помощью зависимости степени сжатия кодера от θ_b и θ_s (рис. 5) для тестовых изображений размером 512×512 . Установлено, что наиболее эффективным является использование следующих значений: $\theta_b = 15$ и $\theta_s = 15$.

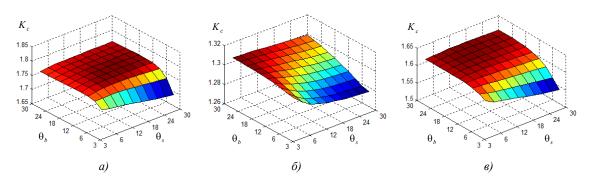


Рис. 5. Зависимости степени сжатия K_c (бит/пиксел) от выбора пороговых значений θ_b и θ_s для изображений: *a)* Lena; *б)* Baboon; *в)* France

Из результатов моделирования следует, что наиболее часто применяется маска $\left(0,\frac{1}{2},\frac{1}{2}\right)$ (рис. 6) из $\left\{(0,1,0),(0,0,1),\left(0,\frac{1}{2},\frac{1}{2}\right)\right\}$.

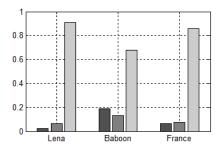


Рис. 6. Вероятности использования трех контекстов при кодировании изображений Lena, Baboon и France: $\left|A-C\right| > \theta_b, \ \left|B-C\right| < \theta_s \ ; \ \left|B-C\right| > \theta_b, \ \left|A-C\right| < \theta_s \ и \ в \ остальных случаях$

Для оценки эффективности и точности предсказания используется степень сжатия разностных изображений $K_{ec}=\frac{b_o}{E'}$, где b_o — максимальное число бит на пиксел исходного изображения; $E'=\sum_m p_m\cdot \log_2 p_m$ — энтропия разностного изображения; p_m — частота появления пиксела со значением E_m (табл. 2 и 3). Для оценки эффективности снижения избыточности ис-

пользуется относительный прирост ΔK коэффициента сжатия K_c по сравнению со степенью сжатия K_{ec} для предсказателей LOCO-I [3], BTPC (Binary Tree Predictive Coding), FLICS (Fast Lossless Image Compression System) [8] и градиентного предсказателя [9] (табл. 4).

Таблица 2 Оценка степени сжатия полутоновых изображений для различных предсказателей

Исходное			Степень	сжатия K_{ec}		
изображение	DPCM	Трех- точечный	LOCO-1	Градиентный предсказатель	FLICS	ВТРС
Lena	1,71	1,75	1,75	1,80	1,58	1,45
Barbara	1,43	1,44	1,45	1,51	1,37	1,23
Baboon	1,19	1,27	1,28	1,25	1,21	1,10
France	1,51	1,62	1,64	1,60	1,47	1,34
Средняя K_{ec}	1,44	1,50	1,51	1,52	1,39	1,26

Таблица 3 Оценка коэффициента сжатия полутоновых изображений для различных предсказателей

Исходное		Коэффициент сжатия K_c						
изображение	DPCM	Трех- точечный	LOCO-1	Градиентный предсказатель	FLICS	ВТРС	RAR	ZIP
Lena	1,73	1,76	1,76	1,67	1,56	1,45	1,56	1,17
Barbara	1,49	1,52	1,53	1,43	1,41	1,27	1,23	1,11
Baboon	1,21	1,29	1,29	1,23	1,22	1,10	1,20	1,10
France	1,50	1,60	1,61	1,50	1,44	1,32	1,50	1,19
Средний K_c	1,48	1,54	1,55	1,46	1,41	1,29	1,37	1,14

Таблица 4 Оценка относительного прироста коэффициента сжатия

Исходное	Относительный прирост ΔK					
изображение	DPCM	Трех- точечный	LOCO-1	Градиентный предсказатель	FLICS	BTPC
Lena	0,02	0,01	0,01	-0,13	-0,02	0,00
Barbara	0,06	0,08	0,08	-0,08	0,04	0,04
Baboon	0,02	0,02	0,01	-0,02	0,01	0,00
France	-0,01	-0,02	-0,03	-0,10	-0,03	-0,02
Средний ΔK	0,02	0,02	0,02	0,02	0,02	0,02

Для оценки влияния способа формирования вектора на коэффициент сжатия используются блоки изображения размером 16×1 , 8×2 , 4×4 , трехточечный предсказатель, вертикальногоризонтальная развертка и развертка Гильберта (табл. 5).

Таблица 5 Влияние выбора формы блока-вектора на коэффициент сжатия для вектора размером $S=16\,$ и DPCM-предсказателя

Выбор	К	оэффицие	Средний K_c		
вектора	Lena	Barbara	Baboon	France	средини п.
Блок 16×1	1,73	1,49	1,21	1,50	1,48
Блок 8×2	1,74	1,51	1,23	1,52	1,5
Блок 4 × 4	1,75	1,53	1,23	1,53	1,51
Развертка Гильберта	1,69	1,46	1,25	1,53	1,48

Определено, что форма выбора вектора слабо влияет на величину коэффициента сжатия (табл. 5). Учитывая относительную сложность реализации формирования векторов из двухмерных блоков, формирование вектора из одномерного блока 16×1 является наиболее эффективным.

Для выбора оптимального размера вектора $\vec{x_t}$ при адаптации кода построен график зависимости коэффициента сжатия K_c от размера вектора S (рис. 7). Установлено, что наиболее оптимальный размер блока для всех классов изображений – 16×1 .

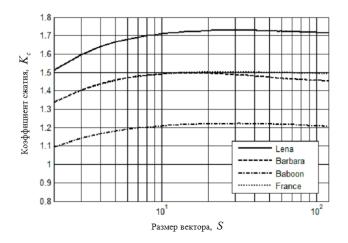


Рис. 7. Зависимость коэффициента сжатия от размера вектора *S* при адаптивном кодировании Голомба – Райса для различных тестовых изображений: Lena, Barbara, Baboon и France

Результаты статистического моделирования декомпозиции источника визуальной информации по кодам Голомба приведены в табл. 6 и 7. Для выявления особенностей кодовой избыточности используются уровень сжатия кодом k $Bpp_k = \sum\limits_c \frac{V_{c,k}}{V_S}$, где $V_{c,k}$ и V_S — количество бит в блоке, кодируемом кодом k, и в исходном блоке соответственно; процент использования кода $\frac{n_k}{N}$ и выигрыш энтропийного кодирования для кода k $G_k = (b_o - Bpp_k) \cdot \frac{n_k}{N}$, где n_k — количество блоков, кодируемых кодом k; N — общее количество блоков.

Таблица 6 Оценка статистических свойств кодовой избыточности полутонового изображения Lena

	Статистиче	ские характерист	ики кода
Параметр кода <i>k</i>	Уровень сжатия кодом Bpp_k , бит/пиксел	Процент использования кода, $\frac{n_k}{N}$	Выигрыш кодирования, G_k
0	3,40	17,5	0,231
1	4,12	43,7	0,486
2	5,09	25,5	0,213
3	6,09	11,7	0,064
4	6,84	1,3	0,004
5	ı	0	0
6		0	0
7		0	0

Проведена оценка вычислительной сложности вычисления разностного изображения для различных предсказателей (табл. 7).

`	оценка вы-ислигельной сложности разли-ных предеказателен						
		Битовые	Общая	Количество			
Тип предсказателя	сложение	умножение	сравнение	округление	сложность	операций на пиксел	
DPCM	1				1	1	
Трехточечный	$2 + \kappa_3$	κ_3	3	2	$7+2\kappa_3$	8,82	
LOCO-1	$2\kappa_3$		5		$5+2\kappa_3$	5,65	
Градиентный предсказатель	$7+4\kappa_{3:6}$	$4\kappa_{3:6}$	6	6	$19 + 8\kappa_{3:6}$	22,3	
FLICS	2,2		2,1		4,3	4,3	
BTPC	1,5				1,5	1,5	

Оценка вычислительной сложности различных предсказателей

Таблица 7

Примечание: κ_3 – коэффициент, характеризующий вероятность вычисления предсказанного значения $\tilde{I}_{i,j}$ в зависимости от контекста C_{ϵ} .

Для оценки влияния выбора цветового преобразования на показатели эффективности сжатия проведено моделирование алгоритма с использованием преобразований YIQ, O1O2O3, I1I2I3, YCoCg, YUrVr, YDbDr, YIUIVI, GRbRr, RCT (YCbCr) (табл. 8–10) [10, 11].

Таблица 8 Оценка коэффициента сжатия цветных изображений при использовании цветового преобразования RGB

Исходное	Тип предсказателя					
изображение	DPCM	DPCM Трехточечный LOCO-1				
Lena	1,64	1,68	1,66			
Barbara	1,48	1,50	1,51			
Baboon	1,20	1,26	1,26			

Таблица 9 Оценка коэффициента сжатия цветных изображений при использовании цветового преобразования YCoCg

Исходное	Тип предсказателя				
изображение	DPCM	LOCO-1			
Lena	1,67	1,70	1,67		
Barbara	1,67	1,82	1,90		
Baboon	1,25	1,30	1,29		

Таблица 10 Оценка коэффициента сжатия цветных изображений при использовании цветового преобразования YCrCb

Исходное	Тип предсказателя					
изображение	DPCM	DPCM Трехточечный Lo				
Lena	1,67	1,72	1,68			
Barbara	1,68	1,82	1,91			
Baboon	1,25	1,30	1,29			

Из табл. 8–10 видно, что влияние преобразования цветового пространства RGB в цветовые пространства YCoCg и YCbCr на коэффициент сжатия K_c зависит от типа предсказателя. Следует отметить, что целесообразность использования преобразования цветового пространства зависит от достижения требуемого соотношения между коэффициентом сжатия и быстродействия.

Результаты моделирования с использованием программной реализация предложенного алгоритма сжатия изображений на основе языка программирования С++ и стандартной библиотеки классов МFC показывают, что разработанный алгоритм обладает высокой скоростью ком-

прессии и декомпрессии, которая линейно зависит от размеров изображения и составляет не более $2,4\cdot10^{-4}$ мс/пиксел (Intel CPU 3,06 GHz).

Таким образом, предложенный алгоритм сжатия изображений обеспечивает высокое отношение сжатие/вычислительная сложность за счет выбора предсказателя с высоким отношением точность предсказания/вычислительная сложность, размера кодируемого блока и энтропийного кодирования на основе кодов Голомба – Райса, что в результате дает возможность адаптироваться к изменениям в статистике контента изображения и выполнить требования по минимизации числа шагов кодирования. Для повышения сжатия цветных изображений предпочтительнее использовать трехточечный предсказатель, который в меньшей степени зависит от изображения.

Заключение

Предложен быстрый алгоритм сжатия полутоновых и цветных изображений без потерь, основанный на использовании пространственного двухпорогового предсказателя с выбором порогов по критерию максимизации коэффициента сжатия и локальной вертикальной и горизонтальной градиентной информации, а также на блочно-адаптивном вычислении квазиоптимального параметра кода Голомба – Райса за счет учета пространственно-статистической корреляции между кодируемыми блоками. Алгоритм обеспечивает низкую вычислительную сложность (8,8 битовых операций на пиксел при использовании трехточечного двухпорогового предсказателя), высокий коэффициент сжатия (1,6–1,76) для тестовых изображений Lena, Barbara, France и не зависит от размеров изображения (квадратное, прямоугольное или кратное степени двойки).

Определено, что для эффективного уменьшения кодовой избыточности целесообразно использовать квазиоптимальное значение параметра $\delta_{\iota} = \pm 1$ относительного изменения параметра кода k_{ι} Голомба – Райса.

Установлено, что наиболее оптимальным числом компонент вектора для выбранных тестовых изображений является 16 и выбор формы кодируемого блока (вектора) разностного изображения незначительно влияет на коэффициент сжатия.

Список литературы

- 1. Santa-Cruz, D. JPEG2000 performance evaluation and assessment / D. Santa-Cruz, T. Ebrahimi // Signal Processing: Image Communication. $-2002.-Vol.\ 17\ (1).-P.\ 113-130.$
- 2. Santa-Cruz, D. An analytical study of JPEG 2000 functionalities / D. Santa-Cruz, T. Ebrahimi // Proc. of the IEEE Intern. Conf. on Image Processing (ICIP). Vancouver, Canada, 2000. Vol. 2. P. 49–52.
- 3. Weinberger, M. The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS / M. Weinberger, G. Seroussi, G. Sapiro // IEEE Trans. Image Processing. 2000. Vol. 9. P. 1309–1324.
- 4. Lopes, F.A. A low complexity image compression solution for onboard space applications / A.F. Lopes, R. d'Amore // SBCCl`10 Proc. of the 23d symposium on Integrated circuits and system design. Sao Paulo, Brazil, 2010. P. 174–179.
- 5. Attar, A. An accurate gradient-based predictive algorithm for image compression / A. Attar, R.M. Rad, A. Shahbahrami // MoMM'10 Proc. of the 8th Intern. Conf. on Advances in Mobile Computing and Multimedia. Paris, France, 2010. P. 374–377.
- 6. Khan, T.H. Lossless and Low-Power Image Compressor for Wireless Capsule Endoscopy / T.H. Khan, K. A. Wahid // Hindawi Publishing Corporation [Electronic resource]. 2011. Mode of access: http://www.hindawi.com/journals/vlsi/2011/343787/cta. Date of access: 29.10.2011.
- 7. Rice, R. Algorithms for a very high speed universal noiseless coding module / R. Rice, P-S. Yeh, W. Miller. Pasadena, 1991.-20 p.
- 8. Suzuki, N. Fast lossless image compression system based on neigborhood comparisons / N. Suzuki // United States Patent [Electronic resource]. 2005. Mode of access: http://www.patents.com/us-6882750.html. Date of access: 29.10.2011.

- 9. Avramović, A. Lossless Predictive Compression of Medical Images / A. Avramović, S. Savić // Serbian Journal of Electrical Engineering. 2011. Vol. 8. P. 27–36.
- 10. Van Assche, S. Lossless compression of pre-press images using a novel color decorrelation technique / S. Van Assche, W. Philips, I. Lemahieu // Pattern Recognition. 1999. Vol. 32. P. 435–441.
- 11. Malvar, H.S. YCoCg-R: A Color Space with RGB Reversibility and Low Dynamic Range / H.S. Malvar, G.J. Sullivan // ITU [Electronic resource]. 2003. Mode of access: http://ftp3.itu.ch/av-arch/jvt-site/2003_09_SanDiego/JVTI014r3.doc. Date of access: 29.10.2011.

Поступила 27.06.11

Белорусский государственный университет информатики и радиоэлектроники, Минск, П. Бровки, 6 e-mail: anbor@bsuir.by

A.A. Boriskevich, A.V. Antonchyk

FAST IMAGE COMPRESSION TECHNIQUE WITH ADAPTIVE BLOCK CODING OF GOLOMB – RICE

A fast block algorithm for lossless image compression with a spatial-code adaptation is proposed. It is based on the use of two-level prediction mask with predefined thresholds, block-adaptive Golomb – Rice code and effective reducing redundancy by a relative change of Golomb – Rice code parameter. The simulation results of the proposed algorithm for grayscale and color images have demonstrated a high compression ratio (1.6–1.75) and a low computational complexity.