ИНФОРМАТИКА

апрель-июнь

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ

УДК 537.8:517. 958

А.И. Куц, Г.Ч. Шушкевич

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ РАССЕЯНИЯ ПОЛЯ ЭЛЕКТРИЧЕСКОГО ДИПОЛЯ НА БИИЗОТРОПНОМ ШАРЕ

Дается аналитическое решение осесимметричной граничной задачи, описывающей процесс рассеяния электромагнитного поля электрического диполя на биизотропном шаре. Решение задачи сводится к решению системы линейных алгебраических уравнений. Приводится формула для вычисления диаграммы направленности электрического поля. Численно исследуется влияние материальных параметров биизотропного шара на диаграмму направленности отраженного электрического поля.

Введение

В середине 80-х гг. ХХ в. в электродинамике СВЧ возрос интерес к исследованию сложных электромагнитных сред. Примером такой среды является киральная среда, которая моделируется совокупностью проводящих зеркально-асимметричных микроэлементов, равномерно распределенных в изотропной магнитодиэлектрической среде [1]. В качестве киральных микроэлементов могут использоваться право- и левовинтовые металлические спирали, кольца с ортогональными прямолинейными концами, сферы со спиральной проводимостью, цилиндры с проводимостью вдоль винтовых линий, частицы в виде греческой буквы Ω. Более подробная классификация киральных сред приводится в работах [1–4]. Биизотропные среды являются обобщением киральных сред. Кроме киральности, данные среды обладают также свойством невзаимности, что делает их перспективными в прикладном отношении [5–7].

Интерес к изучению рассеяния электромагнитных волн на биизотропных средах обусловлен способностью этих сред как усиливать, так и поглощать электромагнитные поля. Свойство усиления может быть использовано для создания различных эффективных антенных систем СВЧ-диапазона. Свойство поглощения перспективно для создания маскирующих и малоотражающих покрытий в СВЧ-диапазоне [8–10].

Рассмотрим некоторые научные работы, относящиеся к данной теме. В работе [11] проводится исследование влияния киральности среды на электромагнитное поле электрического диполя. Излучение системы источников в киральной среде рассматривается в [12–14]. Аналитическое решение задачи дифракции плоской электромагнитной волны на биизотропном шаре предложено в работах [15, 16]. В [17] дается аналитическое решение задачи дифракции плоской электромагнитной волны на плоском слое из композитного материала. Проникновение электромагнитных полей электрического и магнитного диполей через плоский биизтропный слой рассматривается в [18]. В работах [19, 20] исследуется отражение электромагнитных волн от плоских киральных структур. Методом частичных областей в [21] решается задача рассеяния плоской электромагнитной волны на металлическом цилиндре, покрытом киральным слоем.

В настоящей работе построено точное осесимметричное решение задачи о рассеянии электромагнитного поля электрического диполя на биизотропном шаре, проведен вычислительный эксперимент для некоторых геометрических параметров задачи и различных электромагнитных параметров материала биизотропного шара.

1. Постановка задачи

Пусть пространство R^3 разделено сферой *S* радиуса *a* с центром в точке *O* на две области: $D_0(r > a)$ и $D_1(0 \le r < a)$. Область D_0 заполнена средой с диэлектрической проницаемостью ε_0

и магнитной проницаемостью μ_0 , область D_1 – однородной биизотропной средой, материал которой характеризуется параметрами ε , μ , G, Z.

На расстоянии h(h > a) от точки O расположен электрический диполь Герца, колеблющийся с круговой частотой ω . Будем полагать, что на поверхности S отсутствуют поверхностные токи и заряды, а электрический диполь ориентирован вдоль оси шара (рис. 1).

Рис. 1. Геометрия задачи

Для решения задачи свяжем с точками *O* и *O*₁ сферические координаты. Сферическая оболочка *S* описывается следующим образом:

$$S = \{r = a, 0 \le \theta \le 2\pi, 0 \le \phi \le 2\pi\}.$$

Обозначим через \vec{E}_e , \vec{H}_e векторы напряженности электрического и магнитного полей диполя соответственно. В результате взаимодействия электромагнитного поля диполя с биизотропным шаром образуются вторичные поля. Пусть \vec{E}_0 , \vec{H}_0 – вторичное поле, отраженное от границы S в области D_0 ; \vec{E}_1 , \vec{H}_1 – вторичное поле в области D_1 .

Реальное электромагнитное поле определяется с помощью формул

$$\vec{\mathbb{E}}_{j} = \operatorname{Re}\left(\vec{E}_{j} e^{-i\omega t}\right), \quad \vec{\mathbb{H}}_{j} = \operatorname{Re}\left(\vec{H}_{j} e^{-i\omega t}\right),$$

где j = 0, 1; i – мнимая единица.

Постановка задачи. Требуется определить вторичные электромагнитные поля \vec{E}_0 , $\vec{H}_0 \in C^1(D_0) \cap C(\bar{D}_0)$, $\vec{E}_1, \vec{H}_1 \in C(D_1) \cap C(\bar{D}_1)$, которые удовлетворяют:

- уравнениям Максвелла

$$\operatorname{rot} \vec{E}_0 = i\omega\mu_0 \vec{H}_0, \quad \operatorname{rot} \vec{H}_0 = -i\omega\varepsilon_0 \vec{E}_0; \qquad (1)$$

$$\operatorname{rot}\vec{E}_{1} = i\omega\left(\mu\vec{H}_{1} + Z\vec{E}_{1}\right), \quad \operatorname{rot}\vec{H}_{1} = -i\omega\left(\varepsilon\vec{E}_{1} + G\vec{H}_{1}\right), \tag{2}$$

где $G = (\tau + i\kappa)\sqrt{\varepsilon_0\mu_0}$, $Z = (\tau - i\kappa)\sqrt{\varepsilon_0\mu_0}$, κ – параметр киральности, τ – параметр Теллегена;

- граничным условиям на поверхности сферы S

$$\left[\vec{n}, \vec{E}_e + \vec{E}_0\right]\Big|_{S} = \left[\vec{n}, \vec{E}_1\right]\Big|_{S}, \quad \left[\vec{n}, \vec{H}_e + \vec{H}_0\right]\Big|_{S} = \left[\vec{n}, \vec{H}_1\right]\Big|_{S}, \tag{3}$$

где \vec{n} – единичная нормаль к поверхности *S*;

- условию излучения на бесконечности [22, 23]

$$\lim_{r \to \infty} r \left(\frac{\partial \vec{E}_0}{\partial r} - ik_0 \vec{E}_0 \right) = 0, \quad \lim_{r \to \infty} r \left(\frac{\partial \vec{H}_0}{\partial r} - ik_0 \vec{H}_0 \right) = 0, \tag{4}$$

где $k_0 = \omega \sqrt{\varepsilon_0 \mu_0}$ – действительное волновое число.

2. Представление электромагнитных полей

Первичное поле ориентированного вдоль оси *Oz* электрического диполя Герца представим через векторные сферические волновые функции [23]:

$$\vec{E}_{e} = E_{0}\tilde{\vec{n}}_{01}(r_{1},\theta_{1},k_{0}), \quad \vec{H}_{e} = H_{0}\tilde{\vec{m}}_{01}(r_{1},\theta_{1},k_{0}), \quad (5)$$

где
$$E_0 = \frac{ik_0^3}{4\pi\varepsilon_0} p$$
, $H_0 = \frac{E_0k_0}{i\omega\mu_0}$,
 $\tilde{\vec{n}}_{0n}(r,\theta,k) = \frac{n(n+1)}{kr} h_n^{(1)}(kr) P_n(\cos\theta) \vec{e}_r + g_n^{(1)}(kr) P_n^1(\cos\theta) \vec{e}_{\theta}$,
 $\tilde{\vec{m}}_{0n}(r,\theta,k) = -h_n^{(1)}(kr) P_n^1(\cos\theta) \vec{e}_{\phi}$,
 $g_n^{(1)}(x) = \frac{1}{x} \frac{d}{dx} (xh_n^{(1)}(x)) = \frac{1}{2n+1} ((n+1)h_{n-1}^{(1)}(x) - nh_{n+1}^{(1)}(x))$, $n = 1, 2, ...,$

 $\vec{p} = p\vec{e}_z$ – электрический момент диполя, $P_n(x)$ – полиномы Лежандра, $P_n^1(\cos\theta)$ – присоединенные функции Лежандра первого рода, $h_n^{(1)}(x)$ – сферические функции Ханкеля первого рода [24].

Отраженное от границы S электромагнитное поле представим в виде суперпозиции векторных сферических волновых функций, которые удовлетворяют уравнениям (1) и условию на бесконечности (4):

$$\vec{E}_{0} = E_{0} \sum_{n=1}^{\infty} \left[a_{n}^{(2)} \tilde{\vec{m}}_{0n} \left(r, \theta, k_{0} \right) + b_{n}^{(2)} \tilde{\vec{n}}_{0n} \left(r, \theta, k_{0} \right) \right],$$

$$\vec{H}_{0} = H_{0} \sum_{n=1}^{\infty} \left[a_{n}^{(2)} \tilde{\vec{n}}_{0n} \left(r, \theta, k_{0} \right) + b_{n}^{(2)} \tilde{\vec{m}}_{0n} \left(r, \theta, k_{0} \right) \right].$$
(6)

Вторичное электромагнитное поле в области D_1 представим в виде суперпозии векторных сферических функций в композитных средах, которые удовлетворяют уравнениям (2):

$$\vec{E}_{1} = E_{0} \sum_{n=1}^{\infty} \left[a_{n}^{(1)} \vec{K}_{0n}^{(1)} \left(r, \theta, k_{1} \right) + b_{n}^{(1)} \vec{K}_{0n}^{(2)} \left(r, \theta, k_{2} \right) \right],$$

$$\vec{H}_{1} = E_{0} \sum_{n=1}^{\infty} \left[a_{n}^{(1)} p_{1} \vec{K}_{0n}^{(1)} \left(r, \theta, k_{1} \right) + b_{n}^{(1)} p_{2} \vec{K}_{0n}^{(2)} \left(r, \theta, k_{2} \right) \right],$$
(7)

где
$$\vec{K}_{0n}^{(j)}(r,\theta,k_j) = \vec{n}_{0n}(r,\theta,k_j) - q_j \vec{m}_{0n}(r,\theta,k_j),$$

 $\vec{n}_{0n}(r,\theta,k) = \frac{n(n+1)}{kr} j_n(kr) P_n(\cos\theta) \vec{e}_r + g_n(kr) P_n^1(\cos\theta) \vec{e}_{\theta},$
 $\vec{m}_{0n}(r,\theta,k) = -j_n(kr) P_n^1(\cos\theta) \vec{e}_{\phi},$
 $g_n(x) = \frac{1}{x} \frac{d}{dx} (xj_n(x)) = \frac{1}{2n+1} ((n+1)j_{n-1}(x) - nj_{n+1}(x)), n = 1, 2,...,$
 $k_j = \sqrt{g+0.5a^2 + af_j}, \quad 0 \le \arg k_j < \pi, \quad g = \omega^2 (\varepsilon\mu - ZG), \quad f_j = (-1)^j f_0,$
 $f_0 = \sqrt{\omega^2 \varepsilon\mu - b^2}, \quad 0 \le \arg f_0 < \pi, \quad b = 0, 5\omega(G+Z), \quad a = i\omega(G-Z),$
 $g_j = f_j - 0, 5a, \quad q_j = \frac{g}{k_j g_j}, \quad p_j = \frac{1}{\mu} \left(\frac{ig}{\omega g_j} - Z\right),$

 $j_n(x)$ – сферические функции Бесселя первого рода [24]. Неизвестные коэффициенты $a_n^{(j)}, b_n^{(j)}, j = 0, 1$, определены в работе [23, с. 275].

3. Выполнение граничных условий

Для выполнения граничных условий (3) представим функции (5) через векторные сферические волновые функции в системе координат с началом в точке *O* с помощью следующих теорем сложения [23]:

$$\tilde{\vec{n}}_{0n}(r_{1},\theta_{1},k_{0}) = \sum_{s=1}^{\infty} \tilde{A}_{s}^{n}(k_{0}h,0)\vec{n}_{0s}(r,\theta,k_{0}), 0 \le r < h,$$
$$\tilde{\vec{m}}_{0n}(r_{1},\theta_{1},k_{0}) = \sum_{s=1}^{\infty} \tilde{A}_{s}^{n}(k_{0}h,0)\vec{m}_{0s}(r,\theta,k_{0}), 0 \le r < h,$$

где $\tilde{A}_{s}^{n}(k_{0}h,\alpha) = k_{0}h\cos\alpha \left[\frac{1}{(2s+3)}\tilde{C}_{s+1}^{n} + \frac{1}{(2s-1)}\tilde{C}_{s-1}^{n}\right] + \tilde{C}_{s}^{n},$

$$\tilde{C}_{s}^{n} = (2s+1) \sum_{\sigma=|s-n|}^{s+n} i^{\sigma+s-n} b_{\sigma}^{(n0s0)} h_{\sigma}^{(1)}(k_{0}h) P_{\sigma}(\cos \alpha), \quad b_{\sigma}^{(n0q0)} = (nq00 \,|\, \sigma 0)^{2},$$

(*nq*00| σ0) – коэффициенты Клебша – Гордона [22]. Тогда

$$\vec{E}_{e} = E_{0} \sum_{n=1}^{\infty} \tilde{A}_{n}^{1} (k_{0}h, 0) \vec{n}_{0n} (r, \theta, k_{0}), \quad \vec{H}_{e} = H_{0} \sum_{n=1}^{\infty} \tilde{A}_{n}^{1} (k_{0}h, 0) \vec{m}_{0n} (r, \theta, k_{0}).$$
(8)

Принимая во внимание представления (6)–(8), выполняя граничные условия (3) и учитывая ортогональность присоединенных функций Лежандра на отрезке $[0, \pi]$, получим систему линейных алгебраических уравнений вида

$$M(n) \cdot V(n) = F(n), \tag{9}$$

где
$$M(n) = \begin{pmatrix} m_{11}(n) & m_{12}(n) & m_{13}(n) & m_{14}(n) \\ m_{21}(n) & m_{22}(n) & m_{23}(n) & m_{24}(n) \\ m_{31}(n) & m_{32}(n) & m_{33}(n) & m_{34}(n) \\ m_{41}(n) & m_{42}(n) & m_{43}(n) & m_{44}(n) \end{pmatrix}, \quad V(n) = \begin{pmatrix} a_n^{(1)} \\ a_n^{(2)} \\ b_n^{(1)} \\ b_n^{(2)} \\ b_n^{(2)} \end{pmatrix}, \quad F(n) = \begin{pmatrix} f_1(n) \\ f_2(n) \\ f_3(n) \\ f_4(n) \end{pmatrix},$$

$$\begin{split} m_{11}(n) &= g_n(\xi_1), \quad m_{12}(n) = 0, \quad m_{13}(n) = g_n(\xi_2), \quad a_{14} = -g_n^{(1)}(\xi_0), \\ m_{21}(n) &= q_1 j_n(\xi_1), \quad m_{22}(n) = h_n^{(1)}(\xi_0), \quad m_{23}(n) = q_2 j_n(\xi_2), \quad m_{24}(n) = 0, \\ m_{31}(n) &= \overline{p}_1 g_n(\xi_1), \quad m_{32}(n) = -g_n^{(1)}(\xi_0), \quad m_{33}(n) = \overline{p}_2 g_n(\xi_2), \quad m_{34}(n) = 0, \\ m_{41}(n) &= q_1 \overline{p}_1 j_n(\xi_1), \quad m_{42}(n) = 0, \quad m_{43}(n) = q_2 \overline{p}_2 j_n(\xi_2), \quad m_{44}(n) = h_n^{(1)}(\xi_0), \\ f_1(n) &= \widetilde{A}_n^1(k_0 h, 0) g_n(\xi_0), \quad f_2(n) = 0, \quad f_3(n) = 0, \quad f_4(n) = -\widetilde{A}_n^1(k_0 h, 0) j_n(\xi_0), \\ \overline{p}_j &= i \omega \mu_0 p_j / k_0, \quad j = 1, 2, \quad \xi_0 = k_0 a, \quad \xi_1 = k_1 a, \quad \xi_2 = k_2 a. \end{split}$$

4. Диаграмма направленности электромагнитного поля

Используя асимптотические формулы [23]

$$\tilde{\vec{n}}_{0n}(r,\theta,k_0) \approx (-i)^n \frac{e^{ik_0r}}{k_0r} P_n^1(\cos\theta)\vec{e}_{\theta}, \qquad \tilde{\vec{m}}_{0n}(r,\theta,k_0) \approx -(-i)^{n+1} \frac{e^{ik_0r}}{k_0r} P_n^1(\cos\theta)\vec{e}_{\theta},$$

получим асимптотическое представление для вектора электрического поля \vec{E}_0 :

$$\vec{E}_0 \approx E_0 \frac{e^{ik_0 r}}{k_0 r} \vec{\Psi}(\theta), \quad r \to \infty,$$

где $\vec{\Psi}(\theta) = \Psi_1(\theta)\vec{e}_{\theta} + \Psi_2(\theta)\vec{e}_{\varphi},$

$$\Psi_{1}(\theta) = \sum_{n=1}^{\infty} (-i)^{n} P_{n}^{1}(\cos\theta) b_{n}^{(2)}, \quad \Psi_{2}(\theta) = -\sum_{n=1}^{\infty} (-i)^{n+1} P_{n}^{1}(\cos\theta) a_{n}^{(2)}.$$
(10)

Кривая $D(\theta) = |\vec{\Psi}(\theta)|^2$ является диаграммой направленности электрического поля \vec{E}_0 и характеризует величину электромагнитной энергии в направлении θ :

$$D(\theta) = \left| \Psi_1(\theta) \right|^2 + \left| \Psi_2(\theta) \right|^2.$$

Решая систему (9), находим представления для коэффициентов $a_n^{(2)}$, $b_n^{(2)}$:

$$a_{n}^{(2)} = |M_{2}(n)| / |M(n)|, \quad b_{n}^{(2)} = |M_{4}(n)| / |M(n)|, \quad (11)$$

где |M(n)| – определитель матрицы M(n); $|M_j(n)|$ – определитель матрицы $M_j(n)$; $M_j(n)$ – матрица M(n), в которой *j*-й столбец заменен на вектор-столбец F(n), j = 2, 4.

5. Вычислительный эксперимент

Для проведения вычислительного эксперимента была использована система компьютерной математики Mathcad [25].

Специальные функции $j_n(x)$, $h_n^{(1)}(x) = j_n(x) + iy_n(x)$ ($y_n(x)$ – сферическая функция Бесселя второго рода), полиномы Лежандра $P_n(x)$ и присоединенная функция Лежандра

$$P_n^1(\cos\theta) = (nxP_n(x) - nP_{n-1}(x)) / \sqrt{1 - x^2}, \ x \in (-1, 1),$$

вычислялись с помощью встроенных функций [25].

Производные сферических функций вычислялись с помощью рекуррентных формул [28]

$$\frac{d}{dx}f_n(x) = nf_n(x) / x - f_{n+1}(x), \quad n = 0, 1, 2, \dots$$

Все сходящиеся бесконечные суммы в выражениях (10) вычислялись с точностью 10⁻⁵.

На рис. 2 изображены диаграммы направленности $D(\theta)$ электрического поля \tilde{E}_0 для возрастающих значений параметра киральности k = 0,2, 0,4, 0,5, 0,6 при $\tau = 0$ (рис. 2, *a*) и параметра Телленга $\tau = 0,2, 0,4, 0,5, 0,6$ при k = 0 (рис. 2, *b*). В обоих случаях a = 0,2 м, h = 0,5 м, частота исходного поля $f = 5 \cdot 10^9$ Гц. Область D_1 заполнена материалом с относительной магнитной проницаемостью $\mu_r = 1,01$ и относительной диэлектрической проницаемостью $\varepsilon_r = 2,5$. Для сравнения представлена диаграмма направленности $D(\theta)$ электрического поля для проницаемого шара с параметрами $\mu_r = 1,01$, $\varepsilon_r = 2,5$ (обозначена маленькими треугольниками).

Рис. 2. Диаграммы направленности $D(\theta)$ для некоторых значений параметра киральности k при $\tau=0$ (a) и параметра Телленга τ при k=0 (δ)

Анализ графиков на рис. 2 показывает, что амплитуда всех лепестков диаграммы направленности поля уменьшается с увеличением значения параметра киральности k (рис. 2, a), амплитуда основного лепестка диаграммы направленности возрастает с увеличением значения параметра Телленга τ (рис. 2, δ), а боковые лепестки уменьшаются. В обоих случаях наблюдается небольшое смещение диаграммы направленности вправо по сравнению с диаграммой направленности для проницаемого шара. На рис. З изображены диаграммы направленности $D(\theta)$ электрического поля \vec{E}_0 для возрастающих значений параметра киральности *k* и значений параметра Телленга $\tau = 0,2$ (рис. 3, *a*), $\tau = 0,7$ (рис. 3, *б*). Остальные параметры расчетов – прежние.

Рис. 3. Диаграммы направленности $D(\theta)$ для некоторых значений параметра киральности k и параметра Телленга $\tau = 0, 2$ (*a*), $\tau = 0, 7$ (*б*)

Анализ графиков показывает, что с увеличением значений параметра киральности k (при фиксированном значении $\tau > 0$) амплитуда диаграммы направленности может как увеличиваться, так и уменьшаться в зависимости от значения параметра Телленга τ . При значении параметра $\tau = 0,2$ наблюдается возрастание амплитуды диаграммы направленности для k = 0,1, 0,2, 0,3 и уменьшение для k = 0,4 (рис. 3, *a*). При $\tau = 0,7$ наблюдается уменьшение амплитуды диаграммы направленности для k = 0,1, 0,2, 0,3 и уменьшение для k = 0,4 (рис. 3, *a*). При $\tau = 0,7$ наблюдается уменьшение амплитуды диаграммы направленности для k = 0,1, 0,3, 0,8 и возрастание для k = 0,9 (рис. 3, *b*). Как и на рис. 2, наблюдается смещение диаграмм направленности.

На рис. 4 изображены диаграммы направленности $D(\theta)$ электрического поля E_0 для возрастающих значений параметра Телленга τ при фиксированных значениях параметра киральности k = 0,3 (рис. 4, *a*) и k = 0,5 (рис. 4, *б*). Остальные параметры расчетов – прежние.

Рис. 4. Диаграммы направленности $D(\theta)$ для некоторых значений параметра Телленга т и параметра киральности k = 0,3 (*a*), k = 0,5 (*b*)

Характер изменения диаграммы направленности показывает, что при увеличении параметра Телленга τ амплитуда диаграммы направленности уменьшается при значении параметра киральности k = 0,3 (рис. 4, *a*), а при значении параметра киральности k = 0,5 максимум амплитуды практически не изменяется, но происходит его смещение в сторону увеличения угла распространения поля (рис. 4, δ).

На рис. 5 изображены диаграммы направленности $D(\theta)$ электрического поля \vec{E}_0 для следующих значений частоты *f* первичного поля: $4 \cdot 10^8$, $8 \cdot 10^8$, 10^9 , $2 \cdot 10^9 \Gamma$ ц и a = 0,5 м, h = 1,5 м. Область D_1 заполнена киральным материалом с параметрами $\mu_r = 2$, $\varepsilon_r = -4$, $\kappa = 3$, $\tau = 0$.

Рис. 5. Диаграммы направленности $D(\theta)$ для некоторых значений частоты f первичного поля

Из рис. 5 видно, что увеличение частоты исходного поля приводит к смещению максимума диаграммы направленности в сторону меньших значений угла распространения.

Заключение

В статье разработан аналитико-численный алгоритм решения осесимметричной задачи дифракции электромагнитного поля диполя на биизотропном шаре с радиусом, соизмеримым с длиной волны. Вычислена диаграмма направленности отраженного электрического поля. Проведен анализ влияния параметров киральности и Телленга, а также частоты поля на значения диаграммы направленности. Показано, что параметры биизотропности могут быть использованы для концентрации электромагнитного излучения энергии в направлении основного лепестка диаграммы. Для сравнительного анализа приведены диаграммы направленности для шара из кирального метаматериала, когда диэлетрическая проницаемость отрицательная, и графики для шара из обычного магнитодиэлектрического материала.

Разработанный алгоритм и программное обеспечение могут найти практическое применение при моделировании рассеяния электромагнитного поля на биизотропном шаре.

Работа выполнена при поддержке проекта «Trans-Atlantic Micromechanics Evolving Research: Materials containing inhomogeneities of diverse physical properties, shapes and orientations» № IRSES-GA-2013-610547.

Список литературы

1. Неганов, В.А. Электродинамика отражающих и волноведущих структур с искусственными киральными слоями / В.А. Неганов, О.В. Осипов // Успехи современной радиоэлектроники. – 2005. – № 8. – С. 20–45.

2. Киральные электродинамические объекты / Б.З. Каценеленбаум [и др.] // Успехи физических наук. – 1997. – Т. 167, № 11. – С. 1201–1212.

3. Cui, T.J. Metamaterials. Theory, Design and Applications / T.J. Cui, D.R. Smith, R. Lui. – Springer, 2009. – 367 p.

4. Магнитоэлектрические материалы / М.И. Бичурин [и др.]. – М. : Акад. естествознания, 2006. – 296 с.

5. Костин, М.В. К теории киральной среды на основе сферических спирально проводящих частиц / М.В. Костин, В.В. Шевченко // Радиотехника и электроника. – 1998. – Т. 43, № 8. – С. 921–926.

6. Санников, Д.Г. Кроссполяризация света на границе раздела «диэлектрик – биизотропная среда» / Д.Г. Санников // Письма в ЖТФ. – 2009. – Т. 35, вып 8. – С. 14–21.

7. Фисанов, В.В. О материальных параметрах и инвариантах изотропной киральной среды / В.В. Фисанов // Доклады ТУСУРа. – 2011.– № 2. – С. 193–196.

8. Неганов, В.А. Отражающие, волноведущие и излучающие структуры с киральными элементами / В.А. Неганов, О.В. Осипов. – М. : Радио и связь, 2006. – 280 с.

9. Иванов, О.В. Распространение элетромагнитных волн в анизотропных и бианизотропных слоистых структурах / О.В. Иванов. – Ульяновск : УлГТУ, 2010. – 262 с.

10. Проникновение электромагнитных волн через композитные экраны, содержащие идеально проводящие спирали / В.Т. Ерофеенко [и др.] // Инженерно-физический журнал. – 2011. – Т. 84, № 4. – С. 740–746.

11. Шорохова, Е.А. Исследование влияния киральности среды на излучение вертикального электрического диполя / Е.А. Шорохова, М.С. Манахова // Труды XIV науч. конф. по радиофизике. – Нижний Новгород : ННГУ, 2010. – С. 29–31.

12. Шорохова, Е.А. Излучение элементарных источников в киральной среде / Е.А. Шорохова // Радиотехника и электроника. – 2009. – Т. 54, № 6. – С. 680–688.

13. Фисанов, В.В. Об излучении источников в изотропной киральной среде / В.В. Фисанов // Изв. вузов. Физика. – 2006. – № 9. – С. 87–90.

14. Демидчик, В.И. Излучение произвольной системы источников в киральной среде / В.И. Демидчик // Вестник БГУ. Сер. 1. – 2013. – № 2. – С. 44–47.

15. Капшай, В.Н. Рассеяние электромагнитных волн на биизотропном шаре в биизотропной среде / В.Н. Капшай, В.В. Кондратюк // Проблемы физики, математики и техники. – 2010. – № 3. – С. 7–21.

16. Беличенко, В.И. Рассеяние электромагнитных волн биизотропной сферой / В.И. Беличенко, В.В. Фисанов // Изв. вузов. Физика. – 1994. – № 10. – С. 108–112.

17. Ерофеенко, В.Т. Дифракция плоской электромагнитной волны на плоском слое из биизотропного материала / В.Т. Ерофеенко, С.В. Малый // Вестник БГУ. Сер. 1. – 2010. – № 2. – С. 11–16.

18. Ерофеенко, В.Т. Численное исследование взаимодействия электромагнитных полей электрического и магнитного диполей с композитным экраном / В.Т. Ерофеенко, В.Ф. Бондаренко // Изв. НАН Беларуси. Сер. физ.-техн. наук. – 2013. – № 4. – С. 113–120.

19. Неганов, В.А. Отражение электромагнитных волн от плоских киральных структур / В.А. Неганов, О.В. Осипов // Изв. вузов. Радиофизика. – 1999. – Т. 42, № 9. – С. 870–878.

20. Неганов, В.А. Особенности отражения электромагнитных волн от плоских киральных структур / В.А. Неганов, О.В. Осипов // Физика волновых процессов и радиотехнические системы. – 1999. – Т. 2, № 1. – С. 5–11.

21. Неганов, В.А. Рассеяние плоских электромагнитных волн на кирально-металлическом цилиндре / В.А. Неганов, О.В. Осипов // Письма в ЖТФ. – 2000. – Т. 26, вып. 1. – С. 77–83.

22. Иванов, Е.А. Дифракция электромагнитных волн на двух телах / Е.А. Иванов. – Минск : Наука и техника, 1968. – 584 с.

23. Ерофеенко, В.Т. Аналитическое моделирование в электродинамике / В.Т. Ерофеенко, И.С. Козловская. – М. : КД «Либроком», 2014. – 304 с.

24. Справочник по специальным функциям с формулами, графиками и таблицами / под ред. М. Абрамовица, И. Стиган. – М. : Наука, 1979. – 830 с.

25. Шушкевич, Г.Ч. Компьютерные технологии в математике. Система Mathcad 14 / Г.Ч. Шушкевич, С.В. Шушкевич. – Минск : Изд-во Гревцова, 2010. – Ч. 1. – 287 с.

Поступила 10.04.2015

Гродненский государственный университет им. Янки Купалы, Гродно, Ожешко, 22 e-mail: g_shu@tut.by

A.I. Kuts, G.Ch. Shushkevich

NUMERICAL STUDY OF A FIELD SCATTERING OF AN ELECTRICAL DIPOLE ON A BI-ISOTROPIC BALL

An analytical solution of the boundary problem describing scattering of an electromagnetic field of the electric dipole on the bi-isotropic ball is constructed. An influence of some parameters of the problem on the value of the directivity pattern of the electric field is studied by a numerical simulation.