октябрь-декабрь

<u>№</u> 4

УДК 658.512.2:621.9.06

Н.Н. Гущинский, В.Е. Зданович, Б.М. Розин

ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ ДЕТАЛИ НА МНОГОПОЗИЦИОННОМ ПОВОРОТНОМ СТОЛЕ АГРЕГАТНОГО СТАНКА

Рассматривается задача минимизации массы агрегатного станка с многопозиционным поворотным столом за счет размещения детали на столе при обработке деталей одного наименования. Предлагаются математическая модель и эвристический алгоритм «роя частиц» для решения данной задачи. Приводятся результаты численных экспериментов по решению предложенным методом двух задач этого типа. Эксперименты показали большую эффективность алгоритма «роя частиц» для решения рассматриваемых задач по сравнению с методами случайного поиска и ЛП-последовательностей.

Введение

Одной из основных задач при проектировании агрегатного станка (AC) является формирование его компоновки. Проектирование компоновки AC при заданных структуре и параметрах технологического процесса (TП) обработки деталей одного наименования заключается в определении состава, типоразмеров основных силовых и корпусных узлов, а также параметров их взаимного расположения. При этом должны учитываться характерные для рассматриваемого типа AC технологические, конструктивные и эргономические ограничения.

Решению задач автоматизации выбора компоновок различных типов станков, в том числе AC, посвящен ряд публикаций [1–13]. В этих публикациях описана разработанная в ОИПИ НАН Беларуси подсистема «Компоновка» программного комплекса «Агрегат», предназначенная для автоматизации построения компоновок AC, формируемых по блочно-модульному принципу нескольких компоновочных схем с приспособлением для установки деталей на многопозиционных поворотных столах, однопозиционных стационарных и двухпозиционных передвижных столах. Формирование компоновки при помощи этой подсистемы осуществляется в автоматизированном режиме с учетом информации о структуре и параметрах TП, положении обрабатываемой детали на виртуальном приспособлении AC выбранного типа, данных об основных параметрах приспособления и инструментальной наладки. Для полученного варианта компоновки AC определяются его цена, масса, высота и занимаемая площадь.

Кроме структуры и параметров ТП существенное влияние на формируемую компоновку AC оказывает расположение обрабатываемой детали на позициях обработки AC. При этом в ряде случаев для некоторых узлов AC расположение обрабатываемой детали на приспособлении не влияет на выбор их типоразмеров. К таким узлам относятся, в частности, силовые бабки и вспомогательное оборудование (инструментальные шкафы, стружкосборники, гидростанции). Их типоразмеры выбираются минимальными, удовлетворяющими условию обеспечения выполнения с требуемой точностью технологических переходов и функционирования AC в целом. Типоразмеры других унифицированных узлов и сборочных единиц, таких, например, как многошпиндельные коробки, силовые и крестовые столы, на которых размещаются эти коробки и силовые бабки, либо размеры оригинальных узлов, таких как центральные и боковые станины, стойки и подставки, как правило, существенно зависят от размещения на приспособлении обрабатываемой детали [14].

В подсистеме «Компоновка» установка 3D-модели обрабатываемой детали на загрузочной позиции AC производится в ручном режиме. Для построения компоновки AC пользователю приходится устанавливать на позиции стола 3D-модель детали и проводить расчеты многократно, причем в результате этого процесса не гарантируется построение даже допустимой компоновки. На поиск же оптимальной (по выбранному критерию оптимальности) компоновки может потребоваться значительное время. В связи с этим актуальной является задача автоматизации поиска такого размещения обрабатываемой детали на приспособлении, при котором дос-

2015

тигается минимальное значение критерия качества компоновки AC. Критериями качества компоновки в рассматриваемой задаче могут быть выбраны такие характеристики, как материалоемкость, габариты (высота, занимаемая площадь) либо стоимость. Эти характеристики являются, как правило, возрастающими функциями типоразмеров узлов AC. В настоящей работе рассматривается однокритериальная задача оптимизации компоновки AC, в которой в качестве критерия оптимальности выбрана масса станка.

1. Постановка задачи

Рассматривается AC для обработки однородной партии деталей с приспособлением на многопозиционном поворотном делительном столе с вертикальной осью вращения и числом боковых приставок до пяти. Среди боковых приставок имеются горизонтальные приставки с силовыми либо крестовыми столами и установленными на них силовыми бабками и многошпиндельными коробками и может быть одна вертикальная приставка, предназначенная для вертикальной параллельной обработки деталей на нескольких позициях стола (рис. 1). Заданы количество позиций поворотного стола и количество горизонтальных приставок, выполняющих обработку деталей на соответствующих позициях и пристыкованных к фиксированным граням средней станины. Для AC этого типа расположение детали в плоскости стола существенно влияет на типоразмеры выбираемых узлов, особенно узлов вертикальной боковой приставки.

Рис. 1. АС с поворотным столом

Вертикальная приставка может быть размещена на любой из предусмотренных для обработки граней центральной станины AC, не занятой горизонтальными приставками. Основные компоновочные параметры виртуального приспособления для размещения деталей (которое еще предстоит спроектировать) задаются пользователем в режиме диалога. К таким параметрам относятся: диаметр планшайбы поворотного стола, диаметр приспособления, длины баз инструментов и их съема, а также толщина литья шпиндельной коробки для силовых столов, на которых они устанавливаются. Ограничения, которым должно удовлетворять размещение детали, можно разделить на три группы:

1) компоновочные;

2) конструктивно-технологические;

3) ограничения на размещение зажимного приспособления детали на загрузочной позиции.

К компоновочным относятся ограничения на взаимное расположение узлов каждой приставки и узлов различных приставок между собой. Конструктивно-технологические ограничения для шпиндельной коробки включают условия на минимальные межшпиндельные расстояния (расстояния между осями пары шпинделей в плоскости, ортогональной их осям), ограничения на размещение осей шпинделей относительно границ габаритных размеров литья шпиндельной коробки и относительно направляющих кондукторной плиты. Вторая группа ограничений для других типовых узлов АС основана на опыте их проектирования на ведущих предприятиях станкостроения Беларуси ОАО «Минский завод автоматических линий им. П.М. Машерова» и ОАО «Барановичский завод автоматических линий». Третья группа ограничений включает ограничения невыхода виртуального зажимного приспособления детали за границы сектора позиции поворотного стола. Более подробно первая и вторая группы ограничений описаны в работе [11].

Перечислим более детально конструктивные ограничения, учитываемые при выборе габарита литья шпиндельной коробки:

 межшпиндельное расстояние должно превышать минимально допустимое, зависящее от параметров (усилий, угловых скоростей) выполняемых соответствующими инструментами технологических переходов;

 – расстояния от оси шпинделя до краев литья коробки и до направляющих втулок комплектов деталей для крепления штанг кондукторных плит должны превышать заданные табличные значения (рис. 2);

– значения параметров (высота H, ширина B) габарита литья выбираются из ряда пар типовых величин, соответствующих возможным реализациям tp–isp (tp – типоразмер, isp – исполнение) шпиндельной коробки, $tp \in \{\text{УHE3111}, ..., \text{УHE3114}\}$, $isp \in \{01, ..., 28\}$ (табл. 1).

Замечание. Следует обратить внимание на существенное различие влияния ограничений на минимальное межшпиндельное расстояние для горизонтальных и вертикальной многошпиндельных коробок. Поскольку каждая горизонтальная шпиндельная коробка выполняет обработку на единственной соответствующей ей позиции, нарушение такого ограничения хотя бы для одной пары ее шпинделей приводит к нереализуемости коробки (для заданной структуры технологического процесса), поскольку межшпиндельное расстояние определяется расположением осей отверстий на плоскости детали и набором технологических переходов этой позиции. Для вертикальной же шпиндельной коробки, выполняющей параллельную обработку на нескольких позициях, межшпиндельные расстояния для шпинделей, выполняющих обработку на различных позициях поворотного стола, могут быть увеличены за счет изменения расположения детали на столе.

Рис. 2. Упрощенное изображение литья шпиндельной коробки

Таблица 1

Компле		Габарит	ы литья,	-		
Исполнение			М	М	Ориентировочная	
Типоразмер	<i>L</i> , мм		Н	R	масса, кг	
	90	110	11	Б		
УНЕ3111	-01	-02	360	400	240	
	-03	-04	400	500	400	
	-05	-06	450	500	440	
	-07	-08	430	620	540	
УНЕ3112	-01	-02	500	030	600	
	-03	-04	300	800	800	
	-05	-06		630	670	
	-07	-08	560	800	830	
	-09	-10		1000	1020	
	-11	-12	630	800	920	
	-13	-14		1000	1200	
	-15	-16		800	1020	
	-17	-18	710	1000	1250	
УНЕ3113	-19	-20		1250	1570	
	-21	-22	800	1000	1430	
	-23	-24		1250	1850	
	-25	-26	900	1000	1580	
	-27	-28		1250	1950	
	-01	-02		1600	2450	
	-03	-04	1000	1250	2130	
	-05	-06		1600	2500	
	-07	-08	1120	1250	2370	
	-09	-10	1250	1250	2800	
УНЕ3114	-01 -02	5(0)	900	950		
	-03	-04	560	1250	1400	
	-05	-06	710	1400	1800	
	-07	-08	800	800	1300	
	-09	-10	900	1400	2150	
	-11	-12	1000	1000	1800	
	-13	-14	1400	1400	2900	

Типоразмеры и масса литья шпиндельной коробки

Снижение массы станка достигается за счет уменьшения масс составляющих его узлов или, что эквивалентно, уменьшения их типоразмеров. При этом, основываясь на опыте разработки соответствующего семейства металлообрабатывающих AC, предполагается, что изменение типоразмеров узлов в заданном диапазоне не приводит к снижению точности и надежности обработки. Размещение на загрузочной позиции AC детали при заданной ее ориентации однозначно определяется координатами начала связанной с деталью локальной системы координат (ЛСК) в системе координат AC, начало которой совмещено с центром поворотного стола.

Рассматриваемая в настоящей работе задача сводится к определению допустимых значений координат начала ЛСК обрабатываемой детали на загрузочной позиции поворотного стола с вертикальной осью вращения, а также выбору грани средней станины для установки боковой приставки с вертикальной шпиндельной коробкой, минимизирующих массу АС.

2. Математическая модель

В рассматриваемой задаче управляемыми переменными являются координаты начала ЛСК детали в системе координат АС и номер грани центральной станины для установки боковой приставки с вертикальной шпиндельной коробкой. Начало правой декартовой трехмерной

системы координат AC совмещено с центром поворотного стола, ее ось 0*z* является нормалью к плоскости поворотного стола, ось 0*y* направлена вдоль биссектрисы внешнего угла сектора загрузочной позиции.

Предполагается, что расположение ЛСК детали на загрузочной позиции AC отличается от расположения системы координат AC только координатами ее начала. Введем необходимые в дальнейшем обозначения:

x_{лск}, *y_{лск}*, *z_{лск}* – координаты начала ЛСК детали, расположенной на загрузочной позиции, в системе координат АС;

N_{поз} – число позиций АС, включая загрузочную;

*N*_{гр} – число граней средней станины (грани нумеруются по часовой стрелке, начиная с нулевой грани для загрузочной позиции по *N*_{гр}–1);

N_{гор} – число боковых приставок с горизонтальными силовыми столами;

{*n*₁, *n*₂, ..., *n*_{Nzop}} – номера граней, занятых горизонтальными силовыми столами;

 $\{q_1, q_2, ..., q_{\theta}\}$ – номера свободных граней средней станины для размещения вертикальной боковой приставки, $\theta = N_{cop} - N_{cop}$;

 $N_{\kappa o h m}$ – число точек излома кусочно-линейной ломаной, описывающей контур детали (либо ее зажимное приспособление);

 $\Delta_{x}^{l}, \Delta_{y}^{l}$ – координаты *l*-й точки контура детали в плоскости 0*xy* ЛСК детали, *l*=1, 2,...,*N*_{конт};

 $m_{np}^{k}(x_{nc\kappa}, y_{nc\kappa}, z_{nc\kappa})$ – масса *k*-й горизонтальной боковой приставки, *k*=1, 2,..., N_{cop} ;

 $m_{np}^{sepm}(x_{nc\kappa}, y_{nc\kappa}, z_{nc\kappa})$ – масса вертикальной боковой приставки;

 $m_{cp, cm}(x_{nc\kappa}, y_{nc\kappa})$ – масса средней станины АС;

 $m_{noe.cm}(x_{nc\kappa}, y_{nc\kappa})$ – масса поворотного стола AC.

Для рассматриваемых AC с приспособлением на поворотном делительном столе предусмотрено использование одногранных (четырехгранных с одной обработанной гранью, предназначенной для установки приставки), четырехгранных, шестигранных или восьмигранных типовых средних станин под поворотный стол. Наибольшее число боковых приставок для таких средних станин не превышает пяти.

Основные компоновочные параметры (величины баз инструментов боковых приставок, длина съема инструментов, радиус защитного короба приспособления и др.) вводятся пользователем в режиме диалога до выполнения процедуры размещения детали. Первоначальное размещение детали на загрузочной позиции начинается с определения координаты z_{nck} высоты ЛСК детали над плоскостью поворотного стола, которая выбирается, как правило, наименьшей возможной и в дальнейшем не меняется в процессе поиска размещения детали. Вследствие этого координата z_{nck} исключается из состава управляемых переменных задачи.

Далее описываются наиболее существенные ограничения, которым должны удовлетворять координаты *x*_{лск}, *y*_{лск} ЛСК детали при ее размещении и которые накладываются проектируемой вертикальной шпиндельной коробкой.

Для описания этих ограничений введем обозначения:

n – число шпинделей шпиндельной коробки;

I = {1, 2,..., *n*} – множество индексов шпинделей шпиндельной коробки;

 $\alpha(i)$ – номер позиции, на которой осуществляется обработка шпинделем $i \in I$;

 x_i, y_i – координаты оси шпинделя $i \in I$ на плоскости поворотного стола в системе координат AC (однозначно определяются по номеру σ конструктивно-технологического элемента (КТЭ), обрабатываемого шпинделем i, номеру $\alpha(i)$ позиции, на которой осуществляется обработка детали этим шпинделем, и координатам x_{nck}, y_{nck} начала ЛСК детали на загрузочной позиции);

 $\delta(i,j)$ – минимальное межшпиндельное расстояние для пары шпинделей $i, j \in I$;

*b*₁, *b*₂, *b*₃ – минимальные расстояния оси шпинделя от края литья и комплектов деталей для крепления штанг кондукторных плит (см. рис. 2);

 $q \in \{q_1, q_2, ..., q_{\theta}\}$ – номер грани центральной станины, сопоставленной вертикальной боковой приставке;

 $\beta = -2\pi q/N_{ep}$ – угол поворота системы координат AC для совмещения оси 0у с осью симметрии грани q центральной станины, на которой располагается вертикальная приставка;

 $X_{max}(q, x_{nc\kappa}, y_{nc\kappa}), X_{min}(q, x_{nc\kappa}, y_{nc\kappa}), Y_{max}(q, x_{nc\kappa}, y_{nc\kappa}), Y_{min}(q, x_{nc\kappa}, y_{nc\kappa})$ – координаты плоскостей, ортогональных соответственно координатным осям 0x, 0y системы координат AC, повернутой относительно вертикальной оси 0z на угол β , которые ограничивают поверхность литья шпиндельной коробки вертикальной боковой приставки на грани q;

H=*H*(*q*, *x*_{лск}, *y*_{лск}) – высота литья шпиндельной коробки вертикальной приставки;

B=*B*(*q*, *x*_{лск}, *y*_{лск}) – ширина литья шпиндельной коробки вертикальной приставки;

 $\Re = \{(H, B)_{p,isp} \mid tp \in \{YH3111, ..., YH3114\}, isp \in \{01, ..., 28\}, по всем сочетаниям tp-isp из табл. 1\} – множество пар габаритных размеров H и B для возможных реализаций литья коробки;$

*N*_{ктэ} – число КТЭ обрабатываемой детали;

 $\Delta^{\sigma}_{_{\kappa m_{2}}}, \Delta^{\sigma}_{_{\kappa m_{2}}}$ – координаты *x*, *y* σ -го КТЭ в ЛСК детали.

Координаты x_i , y_i оси шпинделя $i \in I$ в системе координат AC, повернутой вокруг оси 0z на угол β (шпиндель *i* выполняет обработку σ -го КТЭ детали на позиции $\alpha(i)$), определяются следующим образом:

$$\begin{aligned} x_i &= (x_{\scriptscriptstyle \Lambda C \kappa} + \Delta^{\sigma}_{\scriptscriptstyle K \Pi D_{_X}}) \cdot \cos(2\pi\alpha(i) / N_{\scriptscriptstyle n 0 3} - \beta) - (y_{\scriptscriptstyle \Lambda C \kappa} + \Delta^{\sigma}_{\scriptscriptstyle K \Pi D_{_Y}}) \sin(2\pi\alpha(i) / N_{\scriptscriptstyle n 0 3} - \beta); \\ y_i &= (x_{\scriptscriptstyle \Lambda C \kappa} + \Delta^{\sigma}_{\scriptscriptstyle K \Pi D_{_X}}) \sin(2\pi\alpha(i) / N_{\scriptscriptstyle n 0 3} - \beta) + (y_{\scriptscriptstyle \Lambda C \kappa} + \Delta^{\sigma}_{\scriptscriptstyle K \Pi D_{_Y}}) \cos(2\pi\alpha(i) / N_{\scriptscriptstyle n 0 3} - \beta). \end{aligned}$$

Межшпиндельное расстояние $L(i, j, x_{nck}, y_{nck})$ для каждой пары шпинделей *i*, *j* должно превышать минимально допустимое для них значение $\delta(i, j)$:

$$L(i, j, x_{nc\kappa}, y_{nc\kappa}) \ge \delta(i, j), i, j \in I.$$

$$\tag{1}$$

Значение $\delta(i, j), i, j \in I$, определяется по соответствующей таблице [11] и зависит от диаметров обрабатываемых отверстий и габаритов радиальных подшипников, которые, в свою очередь, зависят от режимов обработки.

В процессе определения габаритов $B=B(q, x_{nc\kappa}, y_{nc\kappa})$ и $H=H(q, x_{nc\kappa}, y_{nc\kappa})$ литья шпиндельной коробки вычисляются координаты плоскостей $X_{max}(q, x_{nc\kappa}, y_{nc\kappa}), X_{min}(q, x_{nc\kappa}, y_{nc\kappa}), Y_{max}(q, x_{nc\kappa}, y_{nc\kappa}), Y_{min}(q, x_{nc\kappa}, y_{nc\kappa})$ с использованием ограничений на размещение осей шпинделей относительно границ литья коробки:

$$X_{max}(q, x_{nc\kappa}, y_{nc\kappa}) - x_i \ge b_2;$$

$$\tag{2}$$

$$x_i - X_{min}(q, x_{nc\kappa}, y_{nc\kappa}) \ge b_2;$$
(3)

$$Y_{max}(q, x_{nc\kappa}, y_{nc\kappa}) - y_i \ge b_2;$$

$$\tag{4}$$

$$y_i - Y_{min}(q, x_{\mathcal{ACK}}, y_{\mathcal{ACK}}) \ge b_3, \tag{5}$$

а также ограничений

$$\begin{cases} X_{\max}(q, x_{\scriptscriptstyle ACK}, y_{\scriptscriptstyle ACK}) - x_i \ge b_1, \\ x_i - X_{\min}(q, x_{\scriptscriptstyle ACK}, y_{\scriptscriptstyle ACK}) \ge b_1 \end{cases} \quad \text{при} \quad \begin{cases} Y_{\max}(q, x_{\scriptscriptstyle ACK}, y_{\scriptscriptstyle ACK}) - y_i \le b_1, \\ y_i - Y_{\min}(q, x_{\scriptscriptstyle ACK}, y_{\scriptscriptstyle ACK}) \le b_1; \end{cases}$$
(6)

$$\begin{cases} Y_{\max}(q, x_{nc\kappa}, y_{nc\kappa}) - y_i \ge b_1, \\ y_i - Y_{\min}(q, x_{nc\kappa}, y_{nc\kappa}) \ge b_1 \end{cases} \quad \text{при} \quad \begin{cases} X_{\max}(q, x_{nc\kappa}, y_{nc\kappa}) - x_i \le b_1, \\ x_i - X_{\min}(q, x_{nc\kappa}, y_{nc\kappa}) \le b_1, \end{cases}$$
(7)

которые обеспечивают непопадание осей шпинделей в квадратные области в углах литья шпиндельной коробки, предназначенные для размещения направляющих втулок крепления штанг кондукторных плит.

Габаритные размеры H и B литья коробки должны быть не меньше чем вычисленные значения $X_{max} - X_{min}$ и $Y_{max} - Y_{min}$ соответственно:

$$B \ge X_{max}(q, x_{nc\kappa}, y_{nc\kappa}) - X_{min}(q, x_{nc\kappa}, y_{nc\kappa});$$
(8)

$$H \ge Y_{max}(q, x_{nc\kappa}, y_{nc\kappa}) - Y_{min}(q, x_{nc\kappa}, y_{nc\kappa}).$$
(9)

При этом значения пар габаритных размеров *H* и *B* выбираются из заданного дискретного множества Я:

$$(H,B)\in\mathfrak{R}.$$

Ограничения на размещение детали (зажимного приспособления) в пределах сектора загрузочной позиции выглядят следующим образом:

$$y_{_{\mathcal{N}\mathcal{K}}} + \Delta_{y}^{l} - (x_{_{\mathcal{N}\mathcal{K}}} + \Delta_{x}^{l}) \cdot tg(\pi / N_{_{no3}}) \le 0, l=1, 2, \dots, N_{_{\mathcal{K}OHm}};$$
(11)

$$y_{\scriptscriptstyle \mathcal{N}\mathcal{K}\mathcal{K}} + \Delta_y^l + (x_{\scriptscriptstyle \mathcal{N}\mathcal{K}\mathcal{K}} + \Delta_x^l) \cdot \operatorname{tg}(\pi / N_{\scriptscriptstyle NO3}) \le 0, \ l=1, 2, \dots, N_{\scriptscriptstyle \mathcal{K}OHM}.$$
(12)

Кроме описанных ограничений, узлы и сборочные единицы компоновки AC (средняя станина, поворотный стол, боковые приставки со шпиндельными коробками и силовыми бабками на горизонтальных силовых столах) должны удовлетворять еще ряду ограничений, как аналогичных приведенным выше, так и задаваемых алгоритмически [11]. В дальнейшем для сокращения изложения описываемое этими ограничениями множество допустимых значений координат $x_{nск}$, y_{nck} начала ЛСК детали на загрузочной позиции приспособления для фиксированного номера q грани вертикальной боковой приставки будем обозначать G(q):

$$(x_{nc\kappa}, y_{nc\kappa}) \in G(q).$$
⁽¹³⁾

Номер *q* грани вертикальной боковой приставки выбирается из множества номеров свободных граней:

$$q \in \{q_1, q_2, ..., q_{\theta}\}.$$
 (14)

Масса $F(q, x_{nc\kappa}, y_{nc\kappa})$ АС представляет сумму масс средней станины $m_{cp. cm}(x_{nc\kappa}, y_{nc\kappa})$, поворотного стола $m_{noe.cm.}(x_{nc\kappa}, y_{nc\kappa})$, горизонтальных боковых приставок $m_{np}^k(x_{nc\kappa}, y_{nc\kappa})$, $k=1, 2, ..., N_{cop}$, вертикальной приставки $m_{np}^{sepm}(x_{nc\kappa}, y_{nc\kappa})$ и вспомогательного оборудования. Поскольку состав вспомогательного оборудования не зависит от расположения детали на приспособлении, его масса в дальнейшем без ограничения общности может не учитываться.

Таким образом, рассматриваемая задача заключается в выборе координат ($x_{nc\kappa}$, $y_{nc\kappa}$) начала ЛСК обрабатываемой детали на загрузочной позиции поворотного стола с вертикальной осью вращения и номера q грани средней станины для размещения вертикальной приставки, удовлетворяющих ограничениям (1)–(14) и минимизирующих массу АС:

$$F(q, x_{nc\kappa}, y_{nc\kappa}) = \sum_{k=1}^{N_{cop}} m_{np}^{k}(x_{nc\kappa}, y_{nc\kappa}) + m_{np}^{sepm}(x_{nc\kappa}, y_{nc\kappa}) + m_{ncpcm}(x_{nc\kappa}, y_{nc\kappa}) + m_{ncg,cm}(x_{nc\kappa}, y_{nc\kappa}) \rightarrow \min.$$
(15)

Если система ограничений (1)–(14) несовместна, то полагается $F(q, x_{nck}, y_{nck}) = \infty$.

В разд. 3 описывается предложенный метод решения задачи (1)–(15).

3. Метод решения

Система ограничений задачи (1)–(15) на допустимое положение детали состоит из линейных ограничений на координаты ($x_{nc\kappa}$, y_{nck}) начала ЛСК детали в плоскости 0xy поверхности стола, квадратичных ограничений на межшпиндельные расстояния, а также ограничений, в том числе задаваемых алгоритмически, относящихся к выбору узлов горизонтальных боковых приставок и условиям совместимости приставок со средней станиной и между собой. Можно показать, что только ограничения на межшпиндельные расстояния порождают невыпуклую область допустимых положений детали, в результате чего задача минимизации даже унимодальной функции не может быть решена в общем случае методами локального поиска, в том числе градиентными, а требует применения глобального поиска. Для такой задачи наиболее подходящими методами решения традиционно являются эвристики и метаэвристики [15], а также методы зондирования области поиска типа ЛП-последовательностей (ЛП) и случайного поиска (СП) [16, 17]. Среди метаэвристик перспективными представляются метод «роя частиц» (PSO – Particle Swarm Optimization Algorithm), генетические алгоритмы, алгоритм имитации отжига, нейронные сети.

В работе для исследования был выбран PSO – эвристический метод численной оптимизации, не требующий специальных свойств оптимизируемой функции. Этот метод нашел применение в большом количестве областей [18]. В частности, он хорошо зарекомендовал себя при решении задач, аналогичных исследуемой в настоящей работе [19, 20]. PSO оптимизирует функцию, поддерживая популяцию возможных решений, называемых частицами, и перемещая эти частицы в области поиска решений согласно итеративно вычисляемой простой формуле. Перемещения частиц учитывают наилучшее найденное в этой области положение, которое изменяется от итерации к итерации при нахождении частицами более выгодных положений. Ниже приведен алгоритм решения рассматриваемой задачи, основанный на методе PSO.

Введем следующие обозначения:

m – число частиц роя в популяции;

 $F(q^{\gamma}, x_{nc\kappa}^{\gamma}, y_{nc\kappa}^{\gamma})$ – значение целевой функции для γ -й частицы, $\gamma = 1, 2, ..., m$, при размещении вертикальной приставки на грани q^{γ} , т;

 $\overline{p}^{\gamma} = (\overline{x}^{\gamma}, \overline{y}^{\gamma})$ – положение γ -й частицы, в котором целевая функция принимает наименьшее значение среди всех ее значений для γ -й частицы, рассмотренных к моменту текущей итерации алгоритма, $\gamma = 1, 2, ..., m$;

 \tilde{q}^{γ} – номер грани, на которой достигается наименьшее значение целевой функции в точке \bar{p}^{γ} ;

 $g = (\bar{x}^{\gamma^*}, \bar{y}^{\gamma^*})$ – положение частицы роя γ^* , в котором целевая функция принимает наименьшее значение среди всех ее значений для всех частиц $\gamma \in \{1, 2, ..., m\}$, рассмотренных к моменту текущей итерации алгоритма;

q^s – номер грани, на которой достигается наименьшее значение целевой функции для точки *g*;

 $\upsilon^{\gamma} = (\upsilon_{x}^{\gamma}, \upsilon_{y}^{\gamma})$ – вектор смещения γ -й частицы (ее скорость), $\gamma = 1, 2, ..., m$;

ω – коэффициент, учитывающий влияние на вектор смещения его значения на предыдущем шаге (инерция);

 ϕ_p – коэффициент влияния лучшего положения (отдельно взятой) частицы γ на ее вектор смещения (не зависит от индекса γ);

 ϕ_g – коэффициент влияния наилучшего найденного положения *g* среди всех частиц роя на вектор смещения каждой из них;

 r_p , r_g – вспомогательные коэффициенты, рассматриваемые как равномерно распределенные на интервале [0, 1] случайные величины;

η – предельное число итераций алгоритма;

T_{CPU} – процессорное время работы алгоритма, с;

 \overline{T}_{CPU} – максимально допустимое время работы алгоритма, с;

 $[x_{min}, x_{max}]$ – отрезок возможных значений $x_{nc\kappa}^{\gamma}$ для γ -й точки, $\gamma = 1, 2, ..., m$;

 $[y_{min}, y_{max}]$ – отрезок возможных значений координаты y_{nck}^{γ} для γ -й точки, $\gamma = 1, 2, ..., m$.

Прямое произведение отрезков $[x_{min}, x_{max}] \times [y_{min}, y_{max}]$ должно включать все возможные начала ЛСК, для которых координаты $x^{\gamma} + \Delta_x^l, y^{\gamma} + \Delta_y^l$ всех точек контура детали содержатся внутри сектора загрузочной позиции поворотного стола, $l=1, 2, ..., N_{KOHM}$.

Сокращение размера отрезков $[x_{min}, x_{max}]$, $[y_{min}, y_{max}]$, определяющих пространство поиска, позволяет повысить эффективность алгоритма решения задачи. Определение этих отрезков зависит от числа N_{no3} позиций поворотного стола AC, координат Δ'_x, Δ'_y точек контура детали в ЛСК детали, $l=1, 2, ..., N_{конт}$, и расположения начала координат ЛСК. В частности, сократить искомые отрезки позволяет определение правильной плоской фигуры (например, круга или прямоугольника), вписанной в контур детали, и исключение таких точек каждого из отрезков (рассматриваемых как геометрическое место координат центра фигуры), в которых эта фигура не вписывается в сектор позиции при любых значениях другой координаты центра фигуры.

Алгоритм PSO:

1. Генерируются *m* случайных точек $p^{\gamma(0)} = (x^{\gamma(0)}, y^{\gamma(0)}), \gamma = 1,...,m$, начала ЛСК детали, координаты x^{γ}, y^{γ} которых равномерно распределены на заданных отрезках $[x_{min}, x_{max}], [y_{min}, y_{max}]$ соответственно.

2. За положение \overline{p}^{γ} частицы γ принимается его начальное значение:

$$\overline{p}^{\gamma} = (\overline{x}^{\gamma}, \overline{y}^{\gamma}) = (x^{\gamma(0)}, y^{\gamma(0)}), \ \gamma = 1, ..., m.$$

3. Определяется начальное значение $\upsilon^{\gamma(0)} = (\upsilon_x^{\gamma(0)}, \upsilon_y^{\gamma(0)})$ вектора скорости частицы γ посредством выбора случайных равномерно распределенных чисел из интервалов $[-(x_{max} - x_{min});(x_{max} - x_{min})], [-(y_{max} - y_{min});(y_{max} - y_{min})], \gamma=1, 2, ..., m$ соответственно.

4. Если частица \bar{p}^{γ} допустима хотя бы для одного $q \in \{q_1, q_2, ..., q_{\theta}\}$, то вычисляется значение целевой функции $F(\tilde{q}, \bar{p}^{\gamma}) = \min\{F(q, x^{\gamma(0)}, y^{\gamma(0)}) | q \in \{q_1, q_2, ..., q_{\theta}\}\}$, иначе полагается $F(\tilde{q}, \bar{p}^{\gamma}) = \infty, \gamma = 1, ..., m$.

5. Среди всех значений $F(\tilde{q}, \bar{p}^{\gamma})$ находится наименьшее и определяются соответствующая точка $g = (\bar{x}^{\gamma^*}, \bar{y}^{\gamma^*})$ и соответствующая ей грань q^g :

$$F(q^{g}, g) = \min\{F(\tilde{q}, \bar{p}^{\gamma(0)}) | \gamma = 1, 2, ..., m\};$$
$$(q^{g}, g) = \arg\{F(q^{g}, g)\}.$$

- 6. Положить $\eta = 1$.
- Для каждой частицы γ=1, 2,..., m:
 - 7.1. Генерируются случайные числа r_p и r_g из интервала [0,1].
 - 7.2. Вычисляется новая скорость $\upsilon^{\gamma(\eta)} = (\upsilon_x^{\gamma(\eta)}, \upsilon_y^{\gamma(\eta)})$ частицы γ по формулам

$$\begin{split} \upsilon_x^{\gamma(\eta)} &= \omega \cdot \upsilon_x^{\gamma(\eta-1)} + \varphi_p \cdot r_p \cdot (\overline{x}^{\gamma} - x^{\gamma}) + \varphi_g \cdot r_g \cdot (\overline{\overline{x}}^{\gamma} - x^{\gamma}); \\ \upsilon_y^{\gamma(\eta)} &= \omega \cdot \upsilon_y^{\gamma(\eta-1)} + \varphi_p \cdot r_p \cdot (\overline{y}^{\gamma} - y^{\gamma}) + \varphi_g \cdot r_g \cdot (\overline{\overline{y}}^{\gamma} - y^{\gamma}). \end{split}$$

7.3. Определяется новое положение $p^{\gamma(\eta)} = (\bar{x}^{\gamma(\eta)}, \bar{y}^{\gamma(\eta)})$ частицы γ переносом ее из положения $p^{\gamma(\eta-1)}$ на итерации $\eta-1$ на вектор $\upsilon^{\gamma(\eta)}$:

$$x^{\gamma(\eta)} = x^{\gamma(\eta-1)} + \upsilon_x^{\gamma(\eta)}, \ y^{\gamma(\eta)} = y^{\gamma(\eta-1)} + \upsilon_y^{\gamma(\eta)}$$

7.4. Если точка $(x^{\gamma(\eta)}, y^{\gamma(\eta)})$ допустима хотя бы для одного $q \in \{q_1, q_2, ..., q_{\theta}\}$, то вычисляется значение $F(q^{\gamma(\eta)}, x^{\gamma(\eta)}, y^{\gamma(\eta)}) = \min\{F(q, x^{\gamma(\eta)}, y^{\gamma(\eta)} | q \in \{q_1, q_2, ..., q_{\theta}\})\}$, иначе полагается $F(q^{\gamma(\eta)}, x^{\gamma(\eta)}, x^{\gamma(\eta)}) = \infty$.

7.5. Если $F(q^{\gamma(\eta)}, x^{\gamma(\eta)}, y^{\gamma(\eta)}) < F(\tilde{q}^{\gamma}, \bar{p}^{\gamma})$, то полагается $\bar{p}^{\gamma} = (x^{\gamma(\eta)}, y^{\gamma(\eta)}), \quad \tilde{q}^{\gamma} = q^{\gamma(\eta)}$ и $F(\tilde{q}^{\gamma}, \bar{p}^{\gamma}) = F(q^{\gamma(\eta)}, x^{\gamma(\eta)}, y^{\gamma(\eta)}).$

7.6. Если $F(\tilde{q}^{\gamma}, \bar{p}^{\gamma}) < F(q^{g}, g)$, то полагается $g = \bar{p}^{\gamma}$, $q^{g} = \tilde{q}^{\gamma}$ и $F(q^{g}, g) = F(\tilde{q}^{\gamma}, \bar{p}^{\gamma})$.

8. Если выполняется любое из условий $\eta = \overline{\eta}$ либо $T_{CPU} \ge \overline{T}_{CPU}$, то переход к п. 9. Иначе полагается $\eta = \eta + 1$ и переход к п. 7. 9. Если $F(q^{g}, g) < \infty$, то (q^{g}, g) – решение задачи. В противном случае решение задачи не найдено.

Таким образом, итерации повторяются до тех пор, пока не выполнится хотя бы одно из условий остановки работы алгоритма: либо выполнится заданное количество итераций, либо истечет максимально допустимое время работы алгоритма.

Как показывает практика, работоспособность и эффективность алгоритма существенно зависят от значений его параметров m, $\overline{\eta}$, ω , φ_p , φ_g . Методике выбора этих параметров при решении тестовых задач посвящен следующий раздел.

4. Численный эксперимент

Приведенный в разд. 3 алгоритм PSO реализован на языке C++. Эксперимент по решению описанных ниже двух тестовых задач рассматриваемого типа проводился на персональном компьютере с 64-разрядной операционной системой Windows 7 на базе процессора Intel Core i3-2120 с частотой 3,3 ГГц и оперативной памятью 8 ГБ.

С целью лучшей адаптации алгоритма для решения конкретного класса задач осуществляется подбор его параметров. Наиболее значимыми из них являются число *m* частиц; предельное число $\overline{\eta}$ итераций; параметр ω , учитывающий инерцию; φ_p – влияние лучшего положения частицы на поиск ее следующего положения; φ_g – влияние известного на каждом конкретном шаге лучшего положения частицы среди всех частиц.

Обозначим:

 F^* – наименьшее значение целевой функции, полученное в результате работы алгоритма PSO;

 g^* – точка, для которой $F(g^*) = F^*$.

Подбор значений параметров PSO с целью повышения его эффективности зависит от решаемой задачи [15]. Наиболее часто в литературе встречаются положительные значения перечисленных параметров алгоритма. Коэффициент ω , как правило, варьировался в пределах от 0 до 1, а коэффициенты φ_p и φ_g – от 0 до 4. Исходя из этого, были определены следующие множества для поиска наилучших значений параметров алгоритма:

 $m = \{5, 10, 15, 20\}, \ \overline{\eta} = \{10, 15, 20, 25, 30\}, \ \omega \in [0,1], \ \varphi_p \in [0,4], \varphi_g \in [0,4].$

Работоспособность алгоритма PSO проверялась на двух тестовых примерах.

Пример 1. На приспособлении AC с шестипозиционным поворотным столом требуется разместить для обработки крупногабаритную деталь (рис. 3, *a*) с размерами H_{dem} (высота) = 550 мм, L_{dem} (длина) = 400 мм и B_{dem} (ширина) = 350 мм. Обработка ведется на четырех позициях: фрезерование двух верхних поверхностей детали осуществляется на второй и четвертой позициях фрезерными бабками, установленными на горизонтальных силовых столах и занимающих соответствующие грани центральной станины; сверление и зенкерование одного отверстия, расположенного на верхней грани детали, осуществляются на пятой и шестой позициях шпиндельной коробкой, установленной на вертикальном силовом столе боковой приставки, которая может быть размещена на третьей, пятой или шестой гранях.

Пример 2. Малогабаритная деталь (рис. 3, δ) с размерами $H_{dem} = 75$ мм, $L_{dem} = 128$ мм и $B_{dem} = 128$ мм предназначается для обработки на этом же AC с шестипозиционным поворотным столом. Обработка ведется на четырех позициях: на второй и пятой позициях сверление и растачивание отверстия диаметром 30 мм, расположенного на боковой грани детали, осуществляются горизонтальными силовыми столами, размещенными на соответствующих гранях (второй и пятой) центральной станины; на третьей, четвертой и пятой позициях сверление, зенкерование и развертка четырех отверстий верхней грани детали выполняются шпиндельной коробкой, установленной на вертикальном силовом столе приставки, которая может быть размещена на третьей, четвертой или шестой гранях центральной станины.

На рис. 3, *в* изображены обе детали в положении «в плане» на поверхности поворотного стола и возможные диаметры его планшайбы – 900, 1120, 1250, 1400, 1600, 2000 мм соответственно.

В настоящей работе была выбрана следующая схема подбора параметров алгоритма PSO. Параметру ω присваивалось среднее значение 0,5 из выбранного интервала. Затем подбирались значения параметров φ_p и φ_g таким образом, чтобы получить наименьшее значение целевой функции за наименьшее процессорное время. На рис. 4 представлена зависимость значения F^* от параметров φ_p и φ_g при ω =0,5, m=10, $\overline{\eta}$ =30 для примеров 1 и 2 соответственно.

На рис. 5 показана зависимость значения F^* от числа *m* генерируемых частиц и предельного количества $\overline{\eta}$ итераций при фиксированных значениях параметров $\varphi_p=1,5$, $\varphi_g=3,5$ (для примера 1) и $\varphi_p=4$, $\varphi_g=0,5$ (для примера 2), полученных как наилучшие в предыдущем эксперименте. При этом $F^*=20,8697$ для примера 1 и $F^*=12,5704$ для примера 2 были получены при различных значениях параметров φ_p и φ_g , но были выбраны такие значения этих параметров, для которых значение F^* достигалось за наименьшее процессорное время (3,3228 с).

Рис. 3. Примеры обработки на АС с поворотным столом двух деталей различных габаритов

Рис. 4. Зависимость значения F^* от параметров φ_n и φ_e : *a*) для примера 1; *б*) для примера 2

Рис. 5. Зависимость значения F^* от параметров *m* и $\overline{\eta}$: *a*) для примера 1; *б*) для примера 2

Поскольку в каждом из примеров наименьшее значение целевой функции достигалось при различных значениях параметров *m* и $\overline{\eta}$, были выбраны значения, которым соответствовало минимальное значение T_{CPU} . Для примера 1 $F^*=20,8697$ было получено при m=10, $\overline{\eta}=40$. При дальнейшем увеличении $\overline{\eta}$ до 400 значение F^* не улучшалось (рис. 6, *a*). Для примера 2 минимальное значение функции $F^*=12,5704$ было получено при m=10, $\overline{\eta}=30$. При дальнейшем увеличении $\overline{\eta}$ до 400 значение F^* не улучшалось (рис. 6, *a*).

Рис. 6. Зависимость значения T_{CPU} от параметров *m* и $\overline{\eta}$: *a*) для примера 1; *б*) для примера 2

Таким образом, по результатам экспериментов были выбраны следующие значения параметров алгоритма:

– для примера 1: m = 10, $\overline{\eta} = 40$, $\omega = 0.5$, $\phi_p = 1.5$, $\phi_g = 3.5$;

- для примера 2: m = 10, $\overline{\eta} = 30$, $\omega = 0.5$, $\varphi_n = 4$, $\varphi_e = 0.5$.

При этих значениях параметров $F^*=20,8693$ при $T_{CPU}=2,1996$ для примера 1 и $F^*=12,5704$ при $T_{CPU}=4,4304$ для примера 2.

С целью проверки целесообразности использования PSO для решения подобных задач было проведено его сравнение с известными методами СП и ЛП. Поскольку термин «итерация» для PSO и этих методов имеет различный смысл, было введено понятие «шаг» – порядковый номер точки, в которой определяется значение функции *F*. Для методов СП и ЛП число шагов совпадает с количеством итераций, а для PSO число шагов равно произведению числа точек роя и числа итераций. Поскольку для примера 1 с помощью PSO решение было найдено при m = 10, $\overline{\eta} = 40$ (т. е. за 400 шагов), то для СП и ЛП в эксперименте число шагов изменялось в интервале от 10 до 400 (рис. 7, *a* и табл. 2). Для примера 2 выбран интервал от 0 до 300, поскольку параметры PSO были m=10, $\overline{\eta} = 30$ (рис. 7, *b* и табл. 3).

В табл. 2 и 3 N – число шагов сравниваемых алгоритмов и N_F – число шагов, на которых ограничения (1)–(14) совместны.

Рис. 7. Зависимость значения F^* от числа N шагов для методов СП, ЛП и алгоритма PSO: *a)* для примера 1; *б)* для примера 2

			2	1		1			
Ν	СП			ЛП			PSO		
	<i>F</i> [*] , т	N_F	T_{CPU}, c	<i>F</i> *, т	N_F	T_{CPU}, c	<i>F</i> [*] , т	N_F	<i>Т_{СРU}</i> , с
10	20,9424	4	0,1404	24,646	5	0,1872	24,7058	4	0,2496
20	20,9424	12	0,3744	24,646	10	0,3588	24,6789	7	0,3588
30	20,9424	18	0,5304	20,9458	15	0,5616	24,6762	10	0,5148
40	20,9424	22	0,7020	20,9458	20	0,8112	24,6762	13	0,7020
50	20,9424	28	0,8424	20,9458	25	0,9360	24,6748	16	0,7800
100	20,9424	53	1,6536	20,9431	54	2,0280	20,9418	21	1,0764
150	20,9424	81	2,5584	20,9431	78	2,8236	20,9418	24	1,2324
200	20,9424	110	3,6660	20,9431	107	4,0404	20,8723	27	1,2948
250	20,9424	133	4,1028	20,9431	132	4,9140	20,8717	29	1,5444
300	20,9424	163	5,3352	20,9431	158	5,8188	20,8697	34	1,6380
350	20,9424	191	6,2088	20,9396	187	6,8952	20,8695	39	1,9500
400	20,9424	213	7,0980	20,9396	209	7,8000	20,8693	44	2,0904
4000	20.8705	2177	70,7152	20.8716	2155	80.6993	20.8693	248	7.1448

Результаты решения для примера 1

Таблица 3

Результаты решения для примера 2									
Ν	СП			ЛП			PSO		
	<i>F</i> *, т	N_F	<i>T_{CPU}</i> , c	<i>F</i> *, т	N_F	<i>T_{CPU}</i> , c	<i>F</i> *, т	N_F	T_{CPU}, c
10	20,0757	4	0,1248	23,4435	5	0,2184	21,8035	4	0,1404
20	18,8904	12	0,3744	23,3778	10	0,3588	18,7664	6	0,2496
30	18,8904	18	0,5304	19,7998	15	0,5304	18,5285	9	0,4212
40	18,8904	22	0,6708	19,7998	20	0,6396	18,5285	12	0,5772
50	18,8904	28	0,8736	19,1396	25	0,8112	18,5285	14	0,9204
100	18,8904	53	1,4976	18,8907	54	2,0592	18,5312	29	1,5756
150	18,8904	80	2,3868	18,8907	77	2,7924	18,5297	38	2,2464
200	18,8863	108	3,2604	18,8899	106	3,8376	12,5728	46	2,8860
250	18,8863	131	3,9156	18,8899	131	4,8360	12,5706	53	3,5100
300	18,8863	161	4,9452	18,8899	156	5,5692	12,5704	62	4,2432
3000	12,5707	1601	73,2424	12,5732	1594	75,6916	12,5704	398	17,6437

На рис. 8 изображены графики зависимости T_{CPU} от количества N шагов для сравниваемых методов. На решение задач с помощью PSO было потрачено меньше процессорного времени, так как число удовлетворяющих ограничениям точек было существенно меньше, чем в алгоритмах СП и ЛП (см. табл. 2 и 3).

Рис. 8. Зависимость времени T_{CPU} , за которое найдено F^* , от числа N шагов для СП, ЛП и PSO: *а)* для примера 1; *б)* для примера 2

Таблица 2

По результатам экспериментов можно сделать следующие выводы:

1. Для примеров 1 и 2 с помощью PSO были получены решения с меньшими значениями целевой функции за меньшее процессорное время по сравнению с решениями, полученными методами СП и ЛП. При этом для примера 1 больший выигрыш был по процессорному времени, а для примера 2 – по значению целевой функции.

2. Для того чтобы получить значение F^* , близкое к найденному с помощью PSO, для примера 1 было выполнено по 4000 шагов в методах СП и ЛП. При этом для получения $F^*=20,8705$ методом СП было потрачено в 32 раза больше времени ($T_{CPU} = 70,7152$), а для получения $F^*=20,8716$ методом ЛП – в 36 раз ($T_{CPU} = 80,6993$).

С помощью всех трех методов в качестве оптимальной грани для установки вертикального силового стола была выбрана пятая грань центральной станины.

3. Для того чтобы получить значение F^* , близкое к найденному с помощью PSO, для примера 2 было выполнено по 3000 шагов в методах СП и ЛП. При этом для получения $F^*=12,5707$ методом СП было потрачено более чем в 16 раз больше времени ($T_{CPU} = 73,2424$), а для получения $F^*=12,5732$ методом ЛП – более чем в 17 раз ($T_{CPU}=75,6916$).

С помощью всех трех методов в качестве оптимальной грани для установки вертикального силового стола была выбрана четвертая грань центральной станины.

4. При решении оптимизационных задач зачастую используется критерий останова алгоритма по заданному числу последовательных итераций с неизменным значением целевой функции. Проведенный эксперимент с алгоритмом PSO для рассматриваемой задачи показал неприменимость этого критерия останова из-за относительно небольшого числа итераций, необходимых для нахождения решения задачи. Благодаря наличию случайных величин в формуле вычисления вектора скорости минимальное значение целевой функции может обновиться (причем существенно) после 10–20 итераций с неизменным ее значением. Таким образом, эти случайные величины играют важную роль, позволяя выводить алгоритм из локального экстремума и находить лучшее решение.

Заключение

В работе исследована задача оптимизации массы AC с поворотным столом и параллельной многопозиционной многошпиндельной обработкой однородной партии деталей вертикальной приставкой за счет выбора грани расположения этой приставки и размещения детали в секторе загрузочной позиции. Выбор грани для размещения приставки осуществляется полным перебором граней, не занятых горизонтальными приставками. Для оптимизации размещения детали предложен эвристический алгоритм «роя частиц» и подобраны наилучшие параметры этого алгоритма для двух тестовых примеров. Проведено экспериментальное сравнение предложенного метода с известными методами случайного поиска и ЛП-последовательностей, показавшее его превосходство как по значению целевой функции, так и затраченному процессорному времени.

В качестве направления дальнейших исследований предполагается рассмотреть задачу оптимизации размещения на приспособлении AC (с приспособлением на поворотном столе либо на передвижном столе) группы различных деталей для групповых процессов серийной обработки. Эта задача является существенно более сложной, чем рассмотренная в работе, поскольку размещаемые детали могут быть пространственно взаимосвязаны, при этом улучшение положения одной детали не всегда приводит к улучшению положения для других деталей группы.

Авторы выражают искреннюю признательность рецензенту за сделанные замечания, позволившие существенно улучшить описание полученных результатов.

Список литературы

1. Гебель, Х. Компоновка агрегатных станков и автоматических линий / Х. Гебель. – М. : Машгиз, 1959. – 189 с.

2. Горанский, Г.К. Алгоритмизация проектирования типовых компоновок агрегатных станков / Г.К. Горанский, Г.М. Левин, Г.И. Цфасман // Вычислительная техника в машиностроении. – 1967. – Июль. – С. 109–121.

3. Горанский, Г.К. Алгоритмизация проектирования компоновочной схемы агрегатного станка с возвратно-поступательным перемещением обрабатываемой детали / Г.К. Горанский, Г.М. Левин, Г.И. Цфасман // Вычислительная техника в машиностроении. – 1967. – Октябрь. – С. 35–41.

4. Хомяков, В.С. Автоматизированное проектирование компоновок металлообрабатывающих станков / В.С. Хомяков, И.И. Давыдов // Станки и инструмент. – 1990. – № 5. – С. 4–7.

5. Клепиков, С.И. Автоматизация проектирования компоновок металлорежущих станков / С.И. Клепиков, А.Г. Ивахненко, Д.В. Картелев // Станки и инструмент. – 2002. – № 7. – С. 3–4.

6. Врагов, Ю.Д. Анализ компоновок металлорежущих станков: основы компонетики / Ю.Д. Врагов. – М. : Машиностроение, 1978. – 208 с.

7. Аверьянов, О.И. Автоматизированное проектирование компоновок многооперационных станков / О.И. Аверьянов, А.Л. Воронов, Я.М. Гельштейн // Станки и инструмент. – 1982. – № 8. – С. 6–7.

8. Аверьянов, О.И. Модульный принцип построения станков с ЧПУ / О.И. Аверьянов. – М. : Машиностроение, 1987. – 232 с.

9. Халдей, М.Б. Автоматизация синтеза и оценки компоновок станков : автореф. дис. ... канд. техн. наук : 05.03.01 / М.Б. Халдей ; Моск. гос. технол. ун-т. – М., 1996. – 21 с.

10. Хомяков, В.С. Информационная система синтеза компоновок станков / В.С. Хомяков, М.Б. Халдей // Конструкторско-технологическая информатика (КТИ-96) : труды Междунар. конгресса. – М., 1996. – С. 150–151.

11. Комплекс алгоритмов и программных средств формирования компоновок агрегатных металлорежущих станков / Г.М. Левин [и др.]. – Минск, 2005. – 50 с. – (Препринт / Объединенный институт проблем информатики НАН Беларуси; № 4).

12. Автоматизация проектирования агрегатных металлорежущих станков : учеб. пособие / Г.М. Левин [и др.]. – Витебск : ВГТУ, 2008. –122 с.

13. MIP Approach to Design of Rotary Transfer Machines with Turrets / O. Battaia [et al.]. – Saint Etienne, 2013. - 35 p.

14. Розин, Б.М. К синтезу компоновок агрегатных станков для групповой обработки / Б.М. Розин, В.Е. Зданович // Информатика. – 2014. – № 4(44). – С. 100–116.

15. Скобцов, Ю.А. Метаэвристики / Ю.А. Скобцов, Е.Е. Федоров – Донецк : Ноулидж, 2013. – 426 с.

16. Пантелеев, А.В. Методы оптимизации в примерах и задачах : учеб. пособие / А.В. Пантелеев, Т.А. Летова. – 2-е изд. – М. : Высш. шк., 2005. – 544 с.

17. Соболь, И.М. Выбор оптимальных параметров в задачах со многими критериями / И.М. Соболь, Р.Б. Статников. – М. : Дрофа, 2006. – 175 с.

18. Poli, R. Analysis of the Publications on the Applications of Particle Swarm Optimisation / R. Poli // Journal of Artificial Evolution and Applications. – 2008. – Vol. 2008. – P. 1–10.

19. Shahrajabian, H. Multi-constrained optimization in ball-end machining of carbon fiber-reinforced epoxy composites by PSO / H. Shahrajabian, M. Farahnakian // Cogent Engineering. – 2015. - Vol. 2, iss. 1. - 14 p.

20. Wei, L. A particle swarm optimization approach to a multi-objective reconfigurable machine tool design problem / L. Wei, L. Ming // Proceedings of the 2006 IEEE Congress on Evolutionary Computation. – Vancouver, BC, Canada, 2006. – P. 2222–2229.

Поступила 19.10.2015

Объединенный институт проблем информатики НАН Беларуси, Минск, Сурганова, 6 e-mail: gyshin@newman.bas-net.by victoria.zdanovich@gmail.com rozin@newman.bas-net.by

N.N. Guschinski, V.E. Zdanovich, B.M. Rozin

OPTIMIZING THE PLACEMENT OF A WORK-PIECE AT A MULTI-POSITION ROTARY TABLE OF TRANSFER MACHINE WITH VERTICAL MULTI-SPINDLE HEAD

The problem of minimizing the weight of transfer machine with a multi-position rotary table by placing of a work-piece at the table for processing of homogeneous batch of work-pieces is considered. To solve this problem the mathematical model and heuristic particle swarm optimization algorithm are proposed. The results of numerical experiments for two real problems of this type are given. The experiments revealed that the particle swarm optimization algorithm is more effective for the solution of the problem compared to the methods of random search and LP-search.