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Аннотация 
Цели. Целями исследования являются разработка методов построения компактных и эффективных 

нейронных сетей для задач распознавания изображений, а также их аппаратная реализация на базе про-

граммируемых логических интегральных схем (ПЛИС) типа FPGA. 

Методы.  Предложена концепция обучаемого двумерного разделимого преобразования (ОДРП) для по-

строения нейронных сетей прямого распространения для задач распознавания изображений. Особенно-

стью ОДРП является последовательная обработка строк изображения полносвязным слоем, после чего 

полученное представление обрабатывается по строкам вторым полносвязным слоем. В предлагаемой 

архитектуре нейронной сети прямого распространения ОДРП рассматривается как способ извлечения 

вектора признаков из исходного изображения. Аппаратная реализация нейронной сети на базе ОДРП 

основана на концепции вычисления «на месте» (общая память для хранения исходных и промежуточных 

данных), а также на использовании единого набора вычислительных ядер для расчета всех слоев нейрон-

ной сети. 
Результаты. Предложено семейство компактных нейросетевых архитектур LST-1, различающихся 

размерностью векторного представления изображения. Эксперименты по классификации рукописных 

цифр базы MNIST показали высокую эффективность данных моделей: сеть LST-1-28 достигает точно-

сти 98,37 % при 9,5 тыс. параметров, а более компактная LST-1-8 показывает 96,53 % точности при 

1,1 тыс. параметров. Тестирование аппаратной реализации LST-1-28 подтверждает устойчивость архи-

тектуры к ошибкам квантования параметров. 
Заключение . Предложенная концепция ОДРП обеспечивает проектирование компактных и эффектив-

ных нейросетевых архитектур, характеризующихся малым числом обучаемых параметров, высокой точ-

ностью распознавания и регулярной структурой алгоритма, что позволяет получать их эффективные реа-

лизации на базе ПЛИС. 
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Abstract.  

Object ives . Development of methods for design compact and efficient neural networks for image recognition 

tasks, as well as their hardware implementation based on FPGA. 

Methods. The paper proposes the concept of a learnable two-dimensional separable transformation (LST) for 

designing feedforward neural networks for image recognition tasks. A feature of the LST is the sequential  

processing of image rows by a fully connected layer, after which the resulting representation is processed by 

columns using second fully connected layer. In the proposed architecture of a feedforward neural network, 

the LST is considered as a feature extractor. The hardware implementation of LST-based neural network is based 

on the concept of in-place computing (shared memory for storing source and intermediate data), as well as using 

a single set of computing cores to calculate all layers of the neural network. 

Results . A family of compact neural network architectures LST-1 is proposed, differing in the image  

embedding size. Experiments on the classification of MNIST handwritten digits have shown the high efficiency 

of these models: the LST-1-28 network achieves 98.37 % accuracy with 9.5 K parameters, and the more compact 

LST-1-8 shows 96.53 % accuracy with 1.1 K parameters. Testing of the LST-1-28 hardware implementation  

confirms the architecture's resistance to parameter quantization errors. 

Conclusion. The proposed concept of a learnable two-dimensional separable transformation provides the  

design of compact and efficient neural network architectures characterized by: a small number of learnable parameters, 

high recognition accuracy, and the regular structure of the algorithm, which makes it possible to obtain their  

effective implementations based on FPGAs. 
 

Keywords: learnable two-dimensional separable transform, neural networks, FPGA, image recognition, MNIST 
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Введение. Глубокие нейронные сети (НС) являются ключевыми компонентами многих си-

стем компьютерного зрения и обработки изображений благодаря их высокой эффективности 

и способности моделировать сложные зависимости. Однако реализация НС на аппаратных 

платформах с ограниченными вычислительными ресурсами, таких как ПЛИС, сталкивается 

с рядом проблем, главной из которых является высокая вычислительная нагрузка, обусловлен-

ная большим числом параметров НС. Для повышения эффективности необходимо разрабаты-

вать НС с уменьшенным числом параметров [1–5]. Такой подход позволяет снизить требования 

к объему памяти и вычислительным ресурсам. Однако большинство существующих архитектур 

с малым числом параметров основаны на классическом многослойном персептроне [6, 7], что 

зачастую приводит к снижению точности распознавания. 

Таким образом, актуальной научной задачей является разработка эффективных архитектур 

НС, способных достигать компромисса между числом параметров и уровнем точности распо-

знавания. Данный факт подтверждается и проводимыми в научной среде соревнованиями по 

разработке высокоскоростных и малопотребляющих реализаций НС на базе ПЛИС. В частно-

сти, на Международной конференции по обработке изображений в 2025 г. проводилось сорев-

нование «Digit Recognition Low Power and Speed Challenge», где предлагалось разработать ар-

хитектуру ускорителя на базе ПЛИС для распознавания рукописных цифр из базы MNIST. 

К соревнованиям допускались только проекты, которые на тестовой выборке демонстрировали 

точность не менее 97,5 %. 

Одним из перспективных подходов к построению компактных и эффективных НС для рас-

познавания изображений является использование ОДРП [8]. В настоящей статье рассматрива-

ются принципы работы ОДРП и практические аспекты реализации НС с его применением на 

базе ПЛИС. Экспериментальные исследования показывают, что использование ОДРП в каче-

стве средства получения векторного представления (вложения) изображения позволяет полу-

чить компактную архитектуру НС, демонстрирующую высокие показатели точности в задаче 

классификации изображений. Таким образом, данная работа направлена на развитие методов 

построения компактных и эффективных НС для задач распознавания изображений с реализаци-

ей на ПЛИС. 

Обучаемое двумерное разделимое преобразование. С вычислительной точки зрения 

ОДРП (англ. LST, learned 2D separable transform) преобразует двумерное изображение X  раз-

мером in in
d d  в изображение Y  размером out out

d d . Преобразование называется разделимым, 

поскольку вначале выполняется обработка строк изображения X , после чего образуется 

промежуточное представление изображения, имеющее размерность in out
d d . Далее полученное 

промежуточное представление обрабатывается по столбцам, в результате чего получается 

выходное изображение Y размером out out
d d . Таким образом, разделимое преобразование над 

изображением можно представить как композицию двух преобразований, работающих 

с одномерными данными (рис. 1). 

Особенностью ОДРП, представленного в работе [8], является то, что для обработки строк 

и столбов изображения предложено использовать однослойные полносвязные НС. Матема- 

тически ОДРП можно записать в виде  

 

2 1 1 2
( ) σ( σ( ) ),T TLST   Y X W WX b b  (1) 

 

где ( )   – функция активации; 1 2
,W W  – матрицы out in

d d  линейных преобразований, 

описывающих полносвязные слои НС для обработки строк и столбцов соответственно; 1 2
,b b  – 

векторы смещений размером 1
out

d  . 

На рис. 2 показано графическое представление математических действий, выполняемых при 

реализации ОДРП. 
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Рис. 1. Принцип работы разделимого преобразования 

Fig. 1. The principle of operation of a separable transform 
 

 

 

Рис. 2. Обработка изображения обучаемым двумерным разделимым преобразованием 

Fig. 2. Image processing by a learnable two-dimensional separable transform 

 
Можно заметить, что ОДРП состоит из двух этапов обработки. На первом этапе входное 

изображение разделяется на строки и обрабатывается полносвязным слоем FC1, к выходу 

которого применяется нелинейная функция активации. После этого результирующее 

представление обрабатывается по столбцам с использованием слоя FC2. Выход Y  ОДРП будем 

называть вложением (англ. embedding). Размер полученного вложения определяется парамет- 

ром out
d . Общее число настраиваемых параметров ОДРП находится по формуле 

 

2 ( 1)
LST in out

N d d    . (2) 

 
НС LST-1 для распознавания изображений на основе ОДРП. ОДРП можно использовать 

в качестве базового блока при конструировании НС для распознавания изображений. В настоящей 

работе предлагается рассмотреть НС, состоящую из одного блока ОДРП и классифицирующего 

полносвязного слоя с активационной функцией softmax (рис. 3). Внутри блока ОДРП в качестве 

активационной функции используется гиперболический тангенс. 

НС, изображенная на рис. 3, работает следующим образом: на вход подается изображение 

размером 28×28, которое при помощи блока ОДРП преобразуется во вложение размером 

out out
d d . Слой Flatten выполняет преобразование вложения в одномерный вектор размером 

2

out
d . 

Далее полносвязный слой, параметрами которого являются матрица весов o
W  размером 
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2

out classes
d n  и вектор смещений o

b  размерности ,
classes

n  с активационной функцией softmax 

выполняет классификацию изображения, вычисляя вероятности отнесения изобра- 

жения к каждому из 
classes

n  классов. В качестве результата классификации выбирается класс, 

который имеет наибольшую вероятность. 

 

 

Рис. 3. Архитектура нейронной сети LST-1- outd  

Fig. 3. Architecture of neural network LST-1- outd  

 

Представленная модель в дальнейшем будет обозначаться как LST-1- out
d , где out

d  – число, 

определяющее размерность получаемого внутри НС вложения, от которого зависит общее 

число настраиваемых параметров модели. Более строго общее число параметров модели  

LST-1- out
d  определяется как сумма числа параметров ОДРП и числа параметров полно- 

связного выходного слоя: 

 
2

LST-1 LST FC
2 ( 1) ( 1)

in out classes out
N N N d d n d         , (3) 

 

где classes
n  – число распознаваемых классов. 

Значения in
d  и 

classes
n , как правило, определяются условиями задачи и являются фиксирован-

ными, в то время как out
d  может определяться на этапе разработки модели. Заметим, что от 

параметра out
d  зависит емкость (англ. capacity) модели и ее обобщающая способность. Однако, 

как следует из выражения (3), его увеличение вызывает квадратичный рост числа настраи- 

ваемых параметров. 

На рис. 4 показано, как происходит обработка изображения в обученной сети LST-1-28. 

 

 

Рис. 4. Обработка изображения в нейронной сети LST-1-28 

Fig. 4. Image processing in the LST-1-28 neural network 

 

На первом этапе исходное изображение X  обрабатывается по строкам, в результате чего 

образуется промежуточное представление V . Можно заметить, что первые семь строк V  

имеют одинаковые значения. Это связано с тем, что на исходном изображении первые семь 

Полносвязный слой 
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строк также имеют одинаковые значения, равные −1. Результат обработки по столбцам Y  (или 

выход ОДРП) представляет собой вложение, которое после «разворачивания» его в вектор 

подается на вход классифицирующего слоя. Можно отметить, что Y  является рандоми- 

зированым представлением иходного изображения, соседние пиксели Y  не имеют или имеют 

очень слабую корреляционную связь между собой.  

Реализация НС LST-1 на ПЛИС. В данном разделе описывается функциональная схема  

IP-блока для аппаратной реализации модели LST-1 на ПЛИС. Интерфейс разработанного 

аппаратного модуля показан на рис. 5. 

 

 

Рис. 5. Интерфейс IP-блока нейронной сети 

Fig. 5. Interface of the neural network IP block 

 

IP-блок имеет входы для управляющих сигналов сброса (rst_n) и запуска (start_i), а также 

информационный вход din_i, использующийся для подачи пикселей изображения. После 

подачи на вход всех пикселей изображения IP-блок автоматически переходит в режим 

вычисления выходной метки. По окончании вычислительного процесса на выходе rdy_o 

устанавливается значение логической единицы, а метка распознанного класса поступает на 

вход num_o. 

Общий подход, применяемый в реализации данного IP-блока, заключается в переисполь- 

зовании аппаратных ресурсов ПЛИС. IP-блок имеет ОЗУ, в которое в начальный момент 

времени помещается исходное изображение. Затем выполняется обработка изображения по 

строкам и запись результата в то же ОЗУ. Далее происходит обработка полученного 

представления изображения по столбцам с записью результата в ОЗУ. На заключительном 

этапе производятся вычисления, реализующие полносвязный классифицирующий слой, данные 

для которого также берутся из общего ОЗУ. Используя возможности ПЛИС по реализации 

параллельных вычислений, предлагается параллельно вычислять элементы строк и столбцов 

ОДРП, для чего в структуре IP-блока применяются out
d  вычислительных элементов (англ. PE, 

processing element). Каждый вычислительный элемент (ВЭ) состоит из MAC-ядра (англ. 

Multiply and ACcumulate) и набора ПЗУ, которые хранят параметры модели LST-1. 

Ниже приведен общий алгоритм работы IP-блока, реализующего модель LST-1- out
d : 

1. cnt_o = 0 

2. if (start_i == 1) перейти к шагу 3, else перейти к шагу 2 

3. ОЗУ[cnt_o] = din_i 

4. cnt_o = cnt_o + 1 

5. if (cnt_o == 
2 1
out

d  ) перейти к шагу 6, else перейти к шагу 2 

6. for cnt_r = 0, 1,…, 1
in

d   

7.     for i = 0, 1,…, 1
in

d   

8.         ACC[i] = b1[i] 

9.     end for 

10.    for cnt_c = 0, 1,…, 1
in

d   

11.        for i = 0, 1,…, 1
in

d   

12.            ACC[i] = ACC[i] + W1[i,cnt_c]*ОЗУ[cnt_r* in
d  + cnt_c] 
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13.        end for 

14.    end for 

15.    for cnt_c = 0, 1,…, 1
in

d   

16.        ОЗУ[cnt_r* in
d  + cnt_c] =Tanh(ACC[cnt_c]) 

17.    end for 

18. end for 

19. for cnt_c = 0, 1,…, 1
in

d                               

20.     for i = 0, 1,…, 1
in

d                             

21.         ACC[i] = b2[i] 

22.     end for 

23.     for cnt_r = 0, 1,…, 1
in

d   

24.         for i = 0, 1,…, 1
in

d   

25.             ACC[i] = ACC[i] + W2[i,cnt_r] * ОЗУ[cnt_с* in
d  + cnt_r] 

26.         end for 

27.     end for 

28.     for cnt_r = 0, 1, …, 1
in

d   

29.         ОЗУ[cnt_с* in
d  + cnt_r] = Tanh(ACC[cnt_r]) 

30.     end for 

31. end for 

32. for j = 0, 1,…, 1
classes

n   

33.    ACC[i] = b[i] 

34. end for 

35. for cnt_o = 0, 1,…, 1
out

d   

36.     for j = 0, 1,…, 1
classes

n   

37.         ACC[j] = ACC[j] + W[j,cnt_o] * ОЗУ[cnt_o] 

38.     end for 

39. end for 

40. num_o = argmax(ACC[0,1,…, 1
classes

n  ]) 

41. rdy_o = 1 

 

В представленном алгоритме шаги 1–5 нужны для начальной записи изображения в ОЗУ. 

Шаги 6–18 описывают обработку изображения по строкам, а шаги 19–31 – обработку по 

столбцам. Наконец, шаги 32–41 описывают вычисления, связанные с классифицирующим 

слоем. Общая структура IP-блока, реализующего данный алгоритм вычисления для случая 

28,
out

d   изображена на рис. 6. 

Для корректной выборки данных в системе используются три счетчика: два из них отвечают 

за определение строки и столбца соответствующих данных, а третий служит для сквозной 

адресации ОЗУ. Вычисление функции гиперболического тангенса (tanh) осуществляется 

последовательно, что позволяет за 56 системных тактов выполнить обработку одной строки 

изображения (28 тактов тратится на расчет суммы произведений и 28 тактов – на запись 

результата в ОЗУ). Для определения выходного значения применяется упрощенная по сравне- 

нию с softmax функция argmax, которая не использует вычисление экспоненциальных функций, 

что способствует уменьшению вычислительной сложности. 

Все вычисления, относящиеся к ОДРП и к выходному полносвязному слою, осуществля- 

ются с использованием 28
out

d   ВЭ. При реализации одного физического вычислительного 

слоя возникает необходимость разделения ВЭ на два типа (рис. 7): rco – row-column-output и rc – 

row-column. 
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Рис. 6. Структура IP-блока нейронной сети LST-1-28 

Fig. 6. The structure of the LST-1-28 neural network IP block 

 

 

 

Рис. 7. Архитектура вычислительных блоков нейронной сети 

Fig. 7. Architecture of neural network processing elements 
 

В IP-блоке LST-1 используются 10 ВЭ типа rco, которые многократно применяются как для 

вычислений ОДРП, так и для формирования значений выходного полносвязного слоя НС. 

Для поддержки двойной функциональности ВЭ требуются хранилище для коэффициентов 

выходного слоя и дополнительный адресный вход, обеспечивающий управление доступом 

к памяти. Оставшиеся 18 ВЭ типа rc предназначены исключительно для обработки строк 

и столбцов в ОДРП. Переключение режимов вычислений осуществляется устройством 

управления. 

Блок счетчиков (рис. 6) служит для генерации адресов доступа как к памяти весов, так 

и к ОЗУ, где хранятся промежуточные результаты на всех этапах вычислений. 

Слой softmax (см. рис. 3) отвечает за формирование распределения вероятностей по 10 вы- 

ходным классам (цифры от 0 до 9). Однако нет необходимости использовать функцию 

активации softmax при аппаратной реализации НС. Вместо этого можно использовать функцию 

argmax для сравнения всех 10 выходных значений классифицирующего слоя и выбора класса 

с наивысшим значением (англ. score). Кроме того, аппаратная реализация функции argmax 

задействует значительно меньше ресурсов ПЛИС по сравнению с softmax. 

Устройство управления реализовано как конечный автомат с комбинационной логикой для 

генерации следующего состояния и соответствующих управляющих сигналов для других 

модулей. 
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Нелинейная функция активации tanh аппроксимируется с помощью аппаратно-ориенти- 

рованной кусочной функции, поскольку прямая реализация потребовала бы бо́льших 

вычислительных затрат. Аппроксимация выполняется по формуле [2] 

 

sign( ), 2,

tanh( ) ( ) (1 ) , 2 0,
4

(1 ) , 0 2.
4

x x

x
x F x x x

x
x x


 



      



   


 (4) 

 

На рис. 8 показаны исходная функция гиперболического тангенса и ее аппроксимация. 

 

 

Рис. 8. Сравнение функции tanh c ее аппроксимацией 

Fig. 8. Comparison of the tanh function with its approximation 

 

Исходя из рис. 8 можно сделать вывод, что аппроксимация позволяет корректно отразить 

поведение функции активации tanh. Это говорит о релевантности ее использования с целью 

снижения аппаратных затрат при реализации на ПЛИС. 

Процесс обучения НС LST-1. Обучение НС LST-1 осуществлялось с использованием базы 

изображений рукописных цифр MNIST. База MNIST состоит из 70 тыс. изображений разме- 

ром 28×28 пикселей в градациях серого и разбита на две части – тренировочный набор  

(60 тыс. изображений) и тестовый (10 тыс. изображений). На этапе обучения из тренировочного 

набора случайным образом выделялась 1 тыс. изображений для использования в качестве 

валидационного набора, оставшиеся 59 тыс. применялись для обучения модели. Для обучения 

модели использовались язык Python и библиотека PyTorch. 

Перед подачей в НС выполнялась предварительная нормализация изображений. Изначально 

пиксели изображений представлены числами в диапазоне от 0 до 255. Для упро- 

щения процесса обучения выполняется нормализация данных таким образом, чтобы значение 

каждого пикселя было в диапазоне от −1 до 1, среднее значение равнялось нулю, а средне- 

квадратическое отклонение составляло 0,5. Нормализация изображений – распространенный 

практический прием [9], повышающий устойчивость градиентного спуска и ускоряющий 

сходимость модели НС. В качестве функции потерь использовался  отрицательный логарифм 

функции правдоподобия (англ. negative log-likelihood loss, NLLLoss). 

Для оптимизации параметров НС LST-1 применялся метод Adam (англ. ADAptive Moment 

estimation) – один из самых эффективных алгоритмов градиентного спуска с адаптивным 

шагом. Основной параметр любого метода стохастического градиентного спуска – скорость 

обучения η , которая, по сути, является гиперпараметром, влияющим на результат обучения. 

Слишком большое значение η  может привести к тому, что в процессе минимизации функции 

потерь модель не cможет стабилизироваться в точке минимума (глобального или хорошего 

локального). С другой стороны, слишком малое значение η , как правило, приводит к тому, что 

модель «застревает» в точке непроизводительного локального минимума. Чтобы избежать двух 
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описанных сценариев, в данной работе использовался планировщик скорости обучения – 

метод, который плавно изменяет η  в процессе обучения. В частности, скорость обучения 

определялась функцией циклического косинусного отжига [10]: 
 

0

min max min

0

mod( , )1
η( ) = η + (η η ) 1 cos π

2

t T
t

T

  
    

  

, (5) 

 

где t  – номер текущей эпохи; 
min
η  – минимальная скорость обучения; 

max
η  – максимальная 

скорость; 
0

T  – количество эпох, в течение которых происходит спад косинуса, прежде чем ско-

рость сбросится. 

Таким образом, после каждой эпохи обучения параметр скорости обучения перерас- 

считывался по формуле (5) и с помощью валидационного набора для текущей модели рассчи- 

тывалось значение функции потерь. В качестве итоговой выбиралась модель, которая за все 

время обучения имела наименьшее значение функции потерь на валидационном наборе. 

Рассмотренные в настоящей работе модели обучались в течение 300 эпох, длительность 

одного цикла отжига (параметр 
0

T  в выражении (5)) выбиралась равной 100, начальная 

скорость обучения 
max
η 0,001 , а минимальная скорость обучения 6

min
η 5 10  . На рис. 9 пока-

зан график изменения скорости обучения, использовавшийся при обучении моделей. 

 

 

Рис. 9. График изменения скорости обучения с использованием метода косинусного циклического отжига 

Fig. 9. Graph of the change in the learning rate using the cosine annealing with warm restart 

 
Для регуляризации рассмотренных в работе моделей применялся метод дропаут (англ.  

dropout) [11], который заключается в случайном отключении заданной доли drop
p  нейронов 

в полносвязном слое в процессе обучения. Это заставляет модель учиться более устойчивым 

представлениям и давать верные ответы даже при наличии неполных данных на входе. В пол-

носвязных слоях ОДРП модели LST-1, отвечающих за обработку строк и столбцов, значение 

drop
p  выбиралось равным 0,1. 

Экспериментальная часть работы включает два основных этапа: первый – исследование 

производительности модели LST-1 при использовании внутренних вложений различной 

размерности, второй – валидация и тестирование аппаратной реализации модели LST-1 на базе 

ПЛИС. 

Результаты обучения НС LST-1. В работе выполнен анализ производительности модели 

LST-1- out
d  для различных значений параметра out

d . Как говорилось ранее, в предлагаемой 

модели LST-1 параметр out
d  отвечает за размер внутреннего представления входного 

изображения, а также влияет на общее число параметров модели. Ниже приведены результаты 

обучения 11 различных моделей LST-1 с разными значениями параметра out
d . Для каждой 

модели проведены 10 независимых экспериментов обучения с различной начальной инициали- 
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зацией весов. Статистические показатели (среднее значение и стандартное отклонение) точ- 

ности, рассчитанные по результатам этих экспериментов, представлены в табл. 1. Для регу- 

ляризации приведенных в табл. 1 моделей к классифицирующему слою в процессе обучения 

также применялся метод дропаут. Для моделей со значением параметра 2,4,...,16
out

d   для 

последнего слоя устанавливалось значение 0,1
drop

p  . Для моделей со значениями параметра 

20, 24, 28, 32, 36outd  и 40 использовались значения 0,15; 0,15; 0,18; 0,20
drop

p  и 0,22 соответ-

ственно. 

 
Таблица 1  

Число параметров моделей LST-1- out
d  и их точность на тестовой  

выборке MNIST 

Table  1  

The number of parameters of the LST-1- out
d  models and their accuracy  

on the MNIST test set 

Модель 

Model 

Число параметров  

Number of parameters 

Точность, % 

Accuracy, % 

LST-1-2 166 75,13 ± 2,28 

LST-1-4 402 92,93 ± 0,66 

LST-1-8 1114 96,28 ± 0,19 

LST-1-12 2146 97,14 ± 0,17 

LST-1-16 3498 97,27 ± 0,13 

LST-1-20 5170 97,61 ± 0,06 

LST-1-24 7162 97,83 ± 0,14 

LST-1-28 9474 98,03 ± 0,14 

LST-1-32 12 106 98,17 ± 0,18 

LST-1-36 15 058 98,23 ± 0,13 

LST-1-40 18 330 98,32 ± 0,08 

 
Для примера на рис. 10 показаны кривые обучения модели LST-1-20 на тестовом и валида- 

ционном наборах. Кривые показывают, что модель LST-1 имеет стабильную сходимость, хотя 

процесс обучения значительно замедляется после 50-й эпохи. Следует отметить, что после 100-й 

и 200-й эпох видны возмущения функции потерь как на тренировочном, так и на валида- 

ционном наборах, которые объясняются применением метода косинусного отжига для 

управления процессом обучения модели. Если обратиться к графику на рис. 9, то можно заме-

тить, что именно на 100-й и 200-й эпохах происходят скачкообразные переходы к начальной 

скорости обучения, которые и вызывают возмущения.  

 

 
Рис. 10. Функция потерь на тренировочном и валидационном наборах для модели LST-1-20 

Fig. 10. Loss function on the training and validation sets for the LST-1-20 model 
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Разрыв между значениями функции потерь на тренировочном и валидационном наборах 

обусловлен применением дропаут-регуляризации в процессе обучения. Данный метод, реализу-

емый через стохастическое зануление активаций скрытых нейронов, вносит дополнительный 

шум в данные, что приводит к смещению оценки потерь в сторону увеличения для тренировоч-

ного набора относительно валидационного. 

Для полноты оценки и выявления преимуществ модели LST-1 проведен сравнительный 

анализ с архитектурами НС, которые чаще всего используются для аппаратной реализации 

изображений рукописных цифр на базе ПЛИС. 

Чаще всего в работах, посвященных реализации НС на ПЛИС для распознавания 

изображения, в качестве базовой архитектуры рассматривается многослойный перцептрон 

(МСП) (англ. MLP, multilayer perceptrone), состоящий из каскада полносвязных слоев [2, 4, 6, 7, 

12, 13]. Такой выбор можно объяснить тем, что регулярная структура полносвязных слоев МСП 

хорошо отображается на архитектуру ПЛИС. Вычислительное ядро таких слоев – операции 

умножения с накоплением – эффективно реализуется с использованием встроенных  

DSP-блоков, имеющихся во многих современных ПЛИС. Наконец, в отличие от сверточных 

НС, МСП имеет простые и предсказуемые паттерны доступа к памяти данных и весовых 

коэффициентов, что существенно упрощает логику управления памятью.  

Для обозначения топологии конкретного МСП используется специальная нотация. Напри- 

мер, МСП 784-13-10 обозначает, что НС имеет 784 нейрона на входном слое (соответствует 

числу пикселей изображения), 13 нейронов скрытого слоя и 10 нейронов выходного слоя, что 

соответствует количеству распознаваемых классов цифр (0-9). 

В табл. 2 приведены результаты сравнения различных МСП с моделью LST-1 по числу 

параметров и достигаемой точности. Для моделей LST-1-8 и LST-1-28 указаны максимальные 

значения точности, полученные в серии из 10 независимых экспериментов обучения с раз- 

личной начальной инициализацией весов (см. табл. 1). 

 
Таблица 2  

Сравнение модели LST-1 с различными архитектурами МСП 

Table  2  

Comparison of the LST-1 model with various MLP architectures 

Авторы 

Authors  

Модель 

Model 

Число параметров  

Number of parameters 

Точность, % 

Accuracy, % 

[данная работа] LST-1-8 (предлагаемая) 1114 96,53  

Kwon, et al.  [6] МСП 196-14-10 2908 94,03  

[данная работа] LST-1-28 (предлагаемая) 9474 98,37  

Westby, et al.  [7] МСП 784-12-10 9550 93,25  

Huynh [13] МСП 784-40-40-40-10 34 960 97,20  

Huynh [13] МСП 784-126-126-10 115 920 98,16  

Medus, et al.  [2] МСП 784-600-600-10 891 610 98,63  

Liang, et al. [12] МСП 784-2048-2048-2048-10 10 100 000  98,32  

 
Среди компактных архитектур для аппаратной реализации распознавания рукописных цифр 

выделяется МСП 196-14-10 [6]. Особенность данной архитектуры заключается в предвари- 

тельном снижении размерности входного изображения 28×28 пикселей с помощью слоя 

субдискретизации (англ. max-pooling), который формирует уменьшенное изображение 

размером 14×14. Данное представление затем преобразуется в одномерный вектор длиной 196, 

который подается на вход двухслойной сети. Такой трюк с понижением размерности на входе 

позволяет значительно сократить число обучаемых параметров (до 2,9 тыс.), сохранив при этом 

высокую точность 94 %. Для сравнения однослойный перцептрон, обрабатывающий исходное 

изображение без предварительного понижения размерности (784 входных пикселя) и фор- 

мирующий 10 выходных вероятностей, содержит 7,9 тыс. параметров и достигает точности 

92,4 % [14]. Однако представленная в настоящем исследовании модель LST-1-8 превосходит 
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архитектуру [6] по двум основным показателям: точности (превышение на 2,5 %) и ком- 

пактности (количество параметров меньше в 2,5 раза). МСП, предложенные в работе [13], 

позволяют достичь точности от 97,2 до 98,16 % с помощью небольших скрытых полносвязных 

слоев. В работе [12] применяется подход с увеличением числа параметров скрытых слоев. Это 

дает возможность добиться высокой точности (98,32 %) и требует более 10 млн параметров, что 

превышает все рассмотренные архитектуры. 

Среди компактных архитектур, обрабатывающих все 784 пикселя исходного изображения, 

следует выделить МСП 784-12-10 [7], который имеет 9550 параметров и достигает точности 

93,25 %. Однако предлагаемая в настоящей работе модель LST-1-28 имеет практически такое 

же число параметров и точность, превосходящую на 5,12 %. 

Предлагаемая модель LST-1-28 показывает точность, сопоставимую с более сложными 

архитектурами МСП 784-126-126-10 [13] и МСП 784-2048-2048-2048-10 [12], которые, однако, 

имеют одна в 12, а вторая в 1060 раз больше параметров, чем LST-1-28. МСП 784-600-600-10, 

представленный в работе [2], имеет точноcть, на 0,26 % превышающую точность модели  

LST-1-28, но при этом число его параметров в 94 раза больше. 

Квантование параметров модели LST-1 и реализация с фиксированной запятой. 

При аппаратной реализации НС важно предотвратить переполнение разрядной сетки. 

Поскольку модель LST-1, по сути, состоит из трех полносвязных слоев, достаточно 

рассмотреть вопрос определения разрядности данных на примере одного полносвязного слоя. 

Определение разрядности выполнялось по принципу «наихудшего случая». Известно, что на 

входе каждого слоя модели LST-1 данные находятся в диапазоне  1, 1 . Наибольшие значения 

на выходе полносвязного слоя будут получаться в том случае, если на вход поступит вектор, 

каждая компонента которого по модулю будет равна единице, а знаки будут совпадать со 

знаками строки матрицы весов W . Более формально наибольшие возможные значения на 

выходе полносвязного слоя (до функции активации) можно оценить по формуле 

 

max
( , ) sign( )T  Y W b W W b . (6) 

 

На рис. 11 приведены значения 
max

Y  для трех полносвязных слоев обученной сети LST-1-28. 

На выходе слоя, выполняющего обработку по строкам, максимально возможное значение 

равняется 15,02. Аналогичное значение для слоя, выполняющего обработку по столбцам, 

равно 11,9. Максимально возможное значение для выходного слоя равняется 126,3. Таким 

образом, можно сделать вывод, что для представления целой части данных потребуется восемь 

разрядов (один разряд на знак и оставшиеся семь для того, чтобы представить максимально 

возможное число – 126). Число дробных разрядов для представления данных выбиралось 

равным семи. Следует заметить, что восемь разрядов для представления целой части данных 

является завышенной оценкой. Дополнительные проверки путем симуляции модели LST-1 

в арифметике с фиксированной запятой (ФЗ) показали, что уже при использовании семи 

разрядов для представления целой части переполнения разрядной сетки не наступает. Таким 

образом, для внутренного представления данных в IP-блоке использовался формат Q7.7. 

При переводе значений параметров модели из формата с плавающей запятой (ПЗ) в формат 

с ФЗ использовался метод округления к ближайшему меньшему числу, который позволяет 

минимизировать ошибку округления. 

Для верификации IP-блока LST-1 была разработана его эталонная модель на языке Python 

с использованием библиотеки fixedpoint. Данная библиотека дает возможность моделировать 

вычислительные процессы в арифметике с ФЗ. Модель LST-1 с ФЗ позволяет получать доступ 

ко всем промежуточным результатам вычислений, что существенно сократило время отладки 

IP-блока на этапе RTL-проектирования. Кроме того, проведенное моделирование выявило, что 

основной причиной расхождений между исходной версией LST-1 с ПЗ и реализацией с ФЗ 

является использование аппроксимации функции гиперболического тангенса. 
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На рис. 12 представлены результаты работы моделей с ФЗ и ПЗ на этапе вычисления выхода 

полносвязного слоя, выполняющего обработку строк изображения. Можно видеть, что до 

применения активационной функции обе модели дают очень близкий результат. Однако после 

применения активационной функции расхождение между моделями существенно увеличивается. 

 

 

а) 

 

b) 
 

c) 

Рис. 11. Оценка максимального значения на выходе полносвязных слоев модели LST-1-28:  

a) слой обработки строк; b) слой обработки столбцов; c) классификационный слой 

Fig. 11. Estimation of the maximum value at the output of fully connected layers of LST-1-28 model:  

a) row processing layer; b) column processing layer; c) classification layer 

 

 

Рис. 12. Сравнение преактивации и активации в слоях FC1 моделей LST-1-28  

c плавающей и фиксированной запятой 

Fig. 12. Comparison of preactivation and activation in FC1 layers of floating-point  

and fixed-point models LST-1-28 

 
Таким образом, можно сделать вывод, что квантование параметров модели вносит меньший 

вклад в расхождение моделей с ФЗ и ПЗ, чем использование аппроксимированной функции 

активации. 

Тестирование и анализ аппаратной реализации модели LST-1. Для реализации модели 

LST-1 была выбрана отладочная плата Zybo на базе ПЛИС фирмы Xilinx Zynq-7000. Платфор-

ма Zynq объединяет процессор ARM с программируемой логикой FPGA, обеспечивая гибкое 

и эффективное аппаратно-программное решение. Для упрощения разработки и тестирования на 

данной платформе используется дистрибутив Linux-PYNQ, который запускался на процессо- 

ре ARM. PYNQ позволяет взаимодействовать с аппаратными блоками ПЛИС, реализованными 

в виде IP-ядер, с помощью ноутбука Jupyter, что делает процесс разработки более удобным.  
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IP-блок НС LST-1 управляется через регистровый файл, подключенный по uP-интерфейсу 

(данный интерфейс разработан фирмой Analog Devices). При разработке IP-блоков для плат-

форм Xilinx стандартным является использование AXI-интерфейса. Поэтому для подключения 

к процессорной системе Zynq внутри IP-блока LST-1 применяется преобразователь интерфей-

сов uP-AXI4-lite. Общая архитектура системы, использованной для тестирования аппаратной 

реализации НС LST-1, показана на рис. 13. 

 

 

Рис. 13. Прототипирование нейронной сети LST-1 на ПЛИС 

Fig. 13. Prototyping the LST-1 neural network on FPGA 
 

 

 

а) 

 

b) 

Рис. 14. Матрица ошибок нейронной сети LST-1-28: a) модель с плавающей запятой;  

b) модель с фиксированной запятой после квантования параметров 

Fig. 14. Confusion matrix of the LST-1-28 : a) floating-point model; b) fixed-point model with quantized parameters 

 

 

а) 
 

b) 

Рис. 15. Анализ работы модели LST-1-28: a) изображение цифры девять на входе нейронной сети;  

b) сравнение значений преактивации до применения функции softmax/argmax 

Fig. 15. Analysis of the LST-1-28 model: a) image of a digit nine at the input of a neural network;  

b) comparison of preactivations before applying the softmax/argmax function 
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Для тестирования аппаратной реализации модели LST-1 на нее подавались 10 тыс. тестовых 

изображений базы MNIST. Для анализа полученных результатов выполнялось построение мат-

рицы ошибок, которая количественно отображает распределение предсказаний модели относи-

тельно истинных классов объектов. 

На рис. 14 показаны матрицы ошибок, полученные для модели с ПЗ, а также при реализации 

LST-1 на ПЛИС (данная матрица также совпадают с матрицей, полученной с помощью модели 

с ФЗ на основе Python). Общая точность модели LST-1 с весами, квантованными в формате 

Q7.7, составляет 98,28 %, что всего на 0,09 % отличается от точности модели с ПЗ. Следует за-

метить, что для некоторых классов точность предсказаний даже выросла. Так, исходная модель 

с ПЗ распознала правильно 944 изображения цифры шесть, в то время как модель с ФЗ пра-

вильно распознала 946 изображений цифры шесть. 

Для того чтобы прояснить характер ошибок, допускаемых моделью с ФЗ, был проанализи-

рован случай классификации тестового изображения 4823 базы MNIST (рис. 15, a), которое бы-

ло правильно распознано моделью с ПЗ и ошибочно – моделью с ФЗ. 

На рис. 15, b представлены значения преактивации выходного слоя сравниваемых моделей. 

В реализации с ПЗ максимальное значение (–0,46) соответствует верному классу 9 (истинная 

метка MNIST), однако близкое значение на классе 4 (–0,74) свидетельствует о высокой схоже-

сти цифр девять и четыре. В модели с ФЗ эффекты квантования параметров и аппроксимации 

гиперболического тангенса вызывают изменение выходных значений: минимальное значение  

(–0,56) соответствует ошибочному классу 4, тогда как правильному классу 9 соответствует сле-

дующее по величине значение (–0,60). Данный пример, с одной стороны, поясняет характер 

ошибок, возникающих в модели с ФЗ, а с другой – также позволяет понять причину, по которой 

в некоторых случаях модель с ФЗ (например, для класса 6) дала больше правильных прогнозов, 

чем модель с ПЗ. Имеется в виду, что ошибки квантования параметров модели вероятностно 

скорректировали значения выходного слоя таким образом, что максимальные значения преак-

тивации переместились на истинный класс. 

Синтез IP-блока LST-1 в САПР Vivado 2024.2 показал, что для реализации НС требуется 

1288 LUT-блоков и 1071 триггер. Общие аппаратные затраты представлены в табл. 3. 

 
Таблица 3  

Аппаратные затраты на реализацию IP-блока LST-1  

Table  3  

Hardware resources for the LST-1 IP block implementation 

Блок 

Resource 

Использовано 

Utilization 

Доступно 

Available 

Соотношение, % 

Utilization, % 

LUT 1288 17 600 7,32 

LUTRAM 54 6000 0,90 

FF 1071 35 200 3,04 

BRAM 33,5 60 55,83 

DSP 57 80 71,25 

 
Разработанная архитектура НС требует использования лишь 55,83 % блочной памяти 

(BRAM) для хранения всех весовых коэффициентов и смещений, что указывает на пониженные 

требования к памяти модели LST-1. DSP-блоки, представленные в табл. 3, используются для 

реализации MAC-ядер внутри вычислительных элементов PErc/PErco. Максимальная тактовая 

частота IP-ядра 90 МГц. На обработку одного изображения IP-ядру требуется 3921 такт. 

Для сравнения – аппаратная реализация НС с архитектурой VGG16, представленная в рабо-

те [15] и имеющая точность на наборе MNIST 98,34 %, требует 108 тыс. тактов на обработку 

одного изображения. 

Суммарная потребляемая мощность IP-ядра на чипе составляет 1,53 Вт. Температура зафик-

сирована на уровне 42,7 °C, что находится в допустимых пределах для стабильной работы 

устройства. Температурный зазор составляет 42,3 °C, что указывает на запас по тепловой ста-

бильности и безопасное функционирование системы.  
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Заключение. В работе предложена концепция ОДРП для построения эффективных и ком-

пактных архитектур НС. Разработано семейство компактных моделей LST-1 с настраиваемой 

размерностью векторных представлений изображения (LST-1-8, LST-1-28 и др.). Достигнута 

высокая точность распознавания на наборе данных MNIST (98,37 % для LST-1-28 при 

9,5 тыс. параметров и 96,53 % для LST-1-8 при 1,1 тыс. параметров), что дает более чем двух-

кратное превосходство по числу параметров относительно аналогов. Алгоритм вычисления мо-

дели LST-1 имеет регулярную структуру, что позволило получить ее эффективную реализацию 

на ПЛИС. Перспективным направлением дальнейших исследований является интеграция ОДРП 

в архитектуры НС с остаточными связями (англ. residual networks, ResNet), а также в архитек-

туры сверточных НС. В качестве еще одного направления исследований можно предложить 

возможность построения трехмерного обучаемого преобразования для обработки мультиспек-

тральных изображений. 
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