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Abstract

Objectives. The problem of parallelizing computations on multicore systems is considered. On the
Floyd — Warshall blocked algorithm of shortest paths search in dense graphs of large size, two types of
parallelism are compared: fork-join and network dataflow. Using the CAL programming language, a method
of developing actors and an algorithm of generating parallel dataflow networks are proposed. The objective is to
improve performance of parallel implementations of algorithms which have the property of partial order of
computations on multicore processors.

Methods. Methods of graph theory, algorithm theory, parallelization theory and formal language theory are
used.

Results. Claims about the possibility of reordering calculations in the blocked Floyd — Warshall algorithm are
proved, which make it possible to achieve a greater load of cores during algorithm execution. Based on the
claims, a method of constructing actors in the CAL language is developed and an algorithm for automatic
generation of dataflow CAL networks for various configurations of block matrices describing the lengths of the
shortest paths is proposed. It is proved that the networks have the properties of rate consistency, boundedness,
and liveness. In actors running in parallel, the order of execution of actions with asynchronous behavior can
change dynamically, resulting in efficient use of caches and increased core load. To implement the new features
of actors, networks and the method of their generation, a tunable multi-threaded CAL engine has been developed
that implements a static dataflow model of computation with bounded sizes of buffers. From the experimental
results obtained on four types of multi-core processors it follows that there is an optimal size of the network
matrix of actors for which the performance is maximum, and the size depends on the number of cores and the
size of graph.

Conclusion. It has been shown that dataflow networks of actors are an effective means to parallelize
computationally intensive algorithms that describe a partial order of computations over decomposed data.
The results obtained on the blocked algorithm of shortest paths search prove that the parallelism of dataflow
networks gives higher performance of software implementations on multicore processors in comparison with the
fork-join parallelism of OpenMP.
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AHHOTAIIUA

enu. PaccmaTpuBaercs 3a1aua pacnapaielMBaHus BBIYUCICHUH Ha MHOTOSIZIEpHBIX cucTemMax. [locpencTBom
6mouHoro anroputma droiina — Yopinamia Noucka KpaTyalliiiux MyTeH Ha TUIOTHBIX rpadax 0oJbIIoro pasmepa
CPaBHHBAIOTCS [1Ba BHJA TapaUlei3Ma: Pa3BETBICHUE/CIUSHIE W CETeBOH MOTOKOBEIM. C HCIIOIB30BaHUEM
s3b1ka mporpammupoBaHus CAL pa3pabarbIBaroTcss METO MOCTPOCHUS aKTOPOB TOTOKA JAaHHBIX M AITOPHTM
TeHepalny IapajuleIbHbIX ceTeil akTopoB. Llembio paboTHI SABIISIETCS MOBHIMICHUE MTPOU3BOIUTEIFHOCTH Hapal-
JETBPHBIX CETEBBIX pealn3aliii alrOPUTMOB, OOJIAAONINX CBOHCTBOM YaCTHYHOTO TMOPSAKA BBIYUCICHHN, Ha
MHOTOSIIEPHBIX IPOLIECCOPAX.

MeToasl. Mcmoms3yroTes METOOBI TEOPUH TpadoB, TEOPUN aTOPUTMOB, TEOPUH paclapalICIUBaHuUs, TCOPUH
(hopMaNIbHBIX SI3BIKOB.

Pesynbratrhl. JlokazaHel yTBEpKISHHUS O BO3MOKHOCTH MEPEYNOPSIOUYNBAHUS BBIYUCICHUN B OJIOYHOM ajro-
putme ®noiina — Yopinamia, CIOCOOCTBYIOIIME MOBBINICHHIO 3arpy3Kd sICp MPH peau3alydd aJropuTMa.
Ha ocHoBe yTBepkacHMI pa3paboTaH METOH MOCTPOCHHsI akTOpoB Ha si3bike CAL M IpemyioKeH alrOpuTM
aBToMaTnueckor reHepanun CAL-cerell MOTOKAa MAHHBIX IS Pa3IHYHBIX KOHQUTYpaIdii MaTpull OJOKOB,
OMMCHIBAIONINX UTMHBI KpaTdaummx myTed. Jloka3aHo, 4TO ceTH 00JamaloT CBOMCTBaMH COTJIIACOBAHHOCTH,
OTPaHMYECHHOCTH W JXUBYYEeCTH. B akropax, padoTaromuxX NapayieNbHO, MOPSAOK BBITOMHEHUS IeHCTBHIA
C aCHHXPOHHBIM MOBEJCHUEM MOXET TUHAMUYICCKH MEHATHCS, YTO IPUBOIUT K 3PPEKTHBHOMY UCTIOIH30BAHIIO
K3LIEH M yBENMYEHMIO 3arpys3ku siaep. [nst peanuzanny HOBBIX BO3MOXHOCTEH aKTOPOB, CETEH M METOJA MX
TeHepanuu pa3padoTaH HAaCcTpanBaeMblii MHOTOMOTOUYHBIH CAL-ABIKOK, pealM3yrOmuil CTaTHIECKYI0 MOJICIb
MTOTOKOBBIX BEIYUCIICHUH C OTpaHMYCHHBIMH pa3MepamMu 0ydepoB. M3 sKcepiMeHTaTbHBIX Pe3yIbTaToOB, Oy -
YEHHBIX Ha YETHIPEX THUIAX MHOTOSIEPHBIX IPOILIECCOPOB, CIEAYET, UYTO CYIIECTBYET ONTHUMAIBHBIA pasMep
CETEeBOIl MaTPHUIIBI aKTOPOB, AT KOTOPOTO MPOM3BOIUTEIHHOCTh MAaKCHMalbHA, W 3TOT pa3Mep 3aBHCHUT OT
pa3mepa rpada u KoaudecTBa saep.

3akntoueHue. [lokasaHo, 4TO CETH aKTOPOB MOTOKA JAHHBIX SBISIIOTCS 3()(EKTHBHBIM CPEIICTBOM pacrapai-
JIEIUBAHUS aJITOPUTMOB C BHICOKON BBIYUCIUTEIHHON HATPY3KOH, OMUCHIBAIOIINX YACTUYHBIN MOPSIIOK BHIUKC-
JIEHUH HaJ JaHHBIMH, JEKOMIIO3MPOBAHHBIMU Ha YacTHU. Pe3ynbTaThl, MOJTydeHHbIE HAa OJOYHOM alIrOpuUTMe
MOVCKA KpaT4alnx MyTeH, MMoKa3aid, 9TO MapauIen3M ceTell MOTOKa JaHHKIX JaeT 0osiee BEICOKYIO TP OM3BO-
JIUTEJIBHOCTh MPOrPAaMMHBIX pealiu3aluii Ha MHOTOSIAEPHBIX IMPOLECCOpax MO CPaBHEHUIO € MapajljieIn3MOM
pas3BeTBIeHU/ ciustHASA cTaHgapta OpenMP.

KiroueBble c10Ba: OTOK JaHHBIX, CETh aKTOPOB, A3bIKk CAL, kpaTdaiimue myTH, OJIOYHBIA aJrOpUTM, MHOTO-
AJlepHas CUCTEMa, YCKOPEHUE

Jns uurupoBanus. [Ipuxoxuii, A. A. ['eHepalusi MOTOKOBBIX CETEH aKTOPOB MOUCKA KpaTYyaWIIMX MyTeH s
napajuielisHol MHorosaepHo#t peanuszauuu / A. A. Ipuxoxwuii // Undpopmaruka. — 2023. — T. 20, Ne 2. —
C. 65-84. https://doi.org/10.37661/1816-0301-2023-20-2-65-84

Kondaukr unrepecoB. ABTOp 3adBJsieT 00 OTCYTCTBHH KOH(DIUKTA HHTEPECOB.

Introduction. The problem of finding the shortest and longest paths in weighted graphs [1-5] has
many practical applications: computer games, signal processing, city and network traffic, video
compression, microelectronics, optimization of computer systems and networks, task scheduling,
bioinformatics, and many others. It is formulated in different settings and, therefore, is solved by
algorithms of different computational complexity, from polynomial to exponential. In this paper we
consider the all-pairs shortest path problem and the blocked Floyd — Warshall algorithm (BFW) [6-10]
which decomposes the dense graph into subgraphs, has cubic computational complexity and is a basic
one for the problem. BFW helps to 1) localize the data accesses within blocks and thereby reduce the
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data miss count in the processor hierarchical memory; 2) organize the parallel computation of blocks
on a multi-processor system. At the same time, BFW has drawbacks of recalculating all blocks in
every iteration of the loop along graph vertices and of parallelizing the block calculations in the fork-
join style, thus providing insufficient load of processors. Usually, BFW is implemented with OpenMP.
Although the BFW’s complexity is polynomial, to handle large graphs BFW requires huge
computational resources and much runtime even on multiprocessor systems. Scientific research was
done, and works were published which improve the properties of BFW. Thus, [11] extended the
homogeneous blocked Floyd — Warshall algorithm to a heterogeneous one recognizing four types of
blocks and speeding up their computation. In [12], a threaded block-parallel algorithm is proposed
which uses a cooperative scheduler of threads incorporated in the operating system. Work [13] aims
for selecting the optimal size of block. Methods of efficient utilization of hierarchical caches are
proposed in [14, 15]. A generalization of blocked Floyd — Warshall algorithm is proposed in [16]
aiming at reducing the usage of slow global memory in implementations on GPU.

Parallel dataflow networks [17-20] have not been used yet for the realization of BFW; this topic is
the subject of the paper. The dataflow actor concept aims at modelling of distributed knowledge-based
algorithms. Actors match to the heterogeneous and concurrent dataflow nature of various kinds of
embedded systems. The CAL dataflow language is suitable to model applications from cryptography,
multimedia processing, network processing, control systems, reconfigurable systems, power
optimization, monitoring of hardware and software, and others. Both hardware- and software-oriented
CAL-compilers were developed. The concept of actors and principles of concurrency and asynchrony
lie in the basis of CAL. Although CAL is a general-purpose actor-programming language, it was most
successfully used in the MPEG standard known as reconfigurable video coding. The property of
reconfigurability was introduced in CAL due to works [21-24]. In [21], the authors developed the
multidimensional synchronous dataflow. In [22], the authors proposed the parameterized dataflow and
used it for the reconfiguration of digital signal processing systems. Work [23] defined OpenDF as a
dataflow toolset for reconfigurable hardware and multicore systems. The authors of [24] proposed the
Boolean parametric data flow as a means for run-time reconfiguration of CAL programs. Since CAL
aims for the creation of streaming applications, the authors of works [25-27] developed methods and
tools for the synthesis and optimization of dataflow pipelines.

Although this paper develops and implements CAL-networks for parallel solving the all-pairs
shortest path problem on multi-core systems, it shows the way of how actors and dataflow networks of
actors can be created, generated, and implemented targeting other computationally heavy problems of
large sizes with partial order of computations. The main contributions of the paper are:

1. It proves that in parallel BFW the block calculations can be moved across iterations of the loop
along graph vertices and reordered, thus balancing the computational load among processors.

2. By means of simulation it is shown that the reordering of block calculations can increase the
BFW speedup up to 25 %.

3. The approach has been developed which extends the reconfigurability principal and yields a
method of automatic generation of CAL-actors and dataflow CAL-networks for various block-matrix
configurations of shortest paths lengths.

4. Based on the C/C++ language, the generation tool and tunable multi-threaded CAL-engine are
developed which create and implement the dataflow networks of actors on multi-core systems.

5. The computational experiments have shown that the optimal size of the block-matrix and
CAL-network can be found which depends on the core count and graph size; the CAL-networks give
the speedup that is up to 28 % higher than the number of cores and is higher than the speedup
OpenMP gives.

CAL dataflow actor language. Many modern forms of computation are very well suited for data
flow description and implementation. CAL is the high-level dataflow actor programming language
[20-24] in which a program is defined as a network of actors that interact and communicate by
sending and receiving data (tokens) along data lossless and order preserving communication channels.
An actor is a computational entity that consists of input and output ports, state variables, actions, and a
scheduler. Actors run in parallel. When an actor is fired, it consumes tokens from input ports, changes
the internal state and produces tokens on output ports. The action is a piece of computation that an
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actor performs during firing. An actor may contain any number of actions. When an actor is fired, it
selects one of them based on the availability of input tokens and optionally based on conditions
relating to the values of tokens and state variables. An action guard enables conditional action firing.
A finite state machine (FSM) allows actions to be scheduled according to the current state of the actor
and considering action priorities. CAL enables the description of different, but still actor-like,
contexts, which have different kinds of objects (and types), different libraries, different primitive data
objects and operators. The CAL model has the properties of strong encapsulation, explicit
concurrency, and asynchrony (untimedness).

CAL as a domain-specific language provides useful abstractions for parallelizing computations and
dataflow programming. It has been shown that the CAL dataflow networks offer a representation that
can effectively support the tasks of parallelization and vectorization — thus providing a practical means
of supporting multiprocessor systems and utilizing vector instructions. CAL has been used in a wide
variety of applications and has been compiled to hardware and software implementations. It has been
chosen by the ISO/IEC standardization organization in the MPEG standard called Reconfigurable
Video Coding (RVC) (ISO/IEC 23001-4 and 23002-4).

The model of computation [17, 18] defines the semantics of the communication between the actors.
It also defines which scheduling policies can be used to fire actors. There exists a variety of models of
computation for CAL, which make trade-offs between expressiveness and analysability. The set of
recognized dataflow models which are scheduled statically by compiler include Kahn process
networks [17], synchronous dataflow networks (SDF) [18], parameterized synchronous dataflow
(PSDF) [23], Boolean parametric dataflow (BPDF) [24], multidimensional synchronous dataflow
(MDSDF) [22]. Other dataflow networks require dynamical scheduling, which induces a run-time
overhead. The Kahn network is a group of deterministic sequential processes that communicate
through unbounded FIFO channels. In SDF, the number of tokens read and written by each process is
known ahead of time, and the channels have bounded FIFOs. SDF is divided into synchronous sub-
networks connected by asynchronous links. PSDF supports dynamic reconfigurability and design
reuse, but it does not allow the topology of the dataflow graph to change at runtime. BPDF allows
restricted dynamic changes of the graph topology by disabling edges annotated with Boolean
expressions.

To be scheduled statically, the dataflow network must have a basic iteration and have the properties
of rate consistency, boundedness, and liveness [17—24]. The number of tokens consumed or produced
at a given port at each firing is called the rate. The rate consistency of a dataflow network is checked
by generating a system of balance equations, which must have a non-null solution for all possible
values of parameters. The boundedness is guaranteed if the network returns to its initial state after
each iteration. The network liveness is checked by finding a schedule for a basic iteration.

The CAL was first used on the Ptolemy Il platform [20]. The complete OpenDF framework has
been developed for simulating CAL networks and for generating hardware and software code [21].
The portable CAL interpreter used in the Moses project aimed for simulating a hierarchical network of
actors. OpenDF is a compilation framework using a source-to-source compiler. Backends that generate
VHDL/Verilog and C for integration with SystemC were developed.

A problem of automatic generation of dataflow networks. Nowadays, dynamic reconfigurable
embedded systems [21, 22] are widely used, since they have the capability to modify their
functionalities by adding or removing components, and by modifying interconnections among them.
The basic idea behind these systems is to autonomously modify its functionalities according to the
application’s changes. Dynamic reconfiguration is the process of adding, deleting, or moving
resources within the network configuration without deactivating the affected node. The models,
architectures, and design methodologies of the reconfigurable systems have been developed. The
PSDF approach [23] can dynamically reconfigure the behaviour of dataflow actors, edges, graphs, and
subsystems by run-time modification of parameter values. It permits the parameter reconfiguration
that does not change the subsystem interface behavior. BPDF [24] combines both the token-rate and
topology reconfigurations, although, it does not reconfigure the topology significantly. The dataflow
programming models are well-suited to program many-core streaming applications.
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There are a variety of application problems where it is difficult or impossible to create a
reconfigurable dataflow network; therefore, different dataflow networks must be generated depending
on the problem parameters, problem size, and problem formulation. The networks can differ by the
actors, input and output ports, actions, etc, and their quantity. In the paper, we consider such a
problem, i.e., the all-pairs shortest path search in large graphs to be solved on a multi-processor
system. By modifying the blocked Floyd — Warshall algorithm [6, 7], we create and generate dataflow
parallel CAL-networks automatically and implement them efficiently on multi-core systems by means
of creating a CAL-language-based multithreaded engine.

Block-parallel all-pairs shortest path algorithm. Let G = (V, E) be a simple directed graph with
real edge-weights consisting of a set V, [V| =N, of vertices and a set E of edges. Let W be the cost

adjacency matrix for G. So w;; =0, 1 <'i <N; w, ;is the cost (weight) of edge (i, j) if (i, ]) € E and

wij=c if i#] and (i, ) ¢ E. When G has no cycle with negative sum of weights, the dynamic
programming Floyd — Warshall (FW) Algorithm 1 [1, 2] computes a series of distance matrices

D°...D*...D" such that D°=W and each element dik'j of matrix D¥, k=1...N, is the length of the

shortest path from i to j composed of the subset of vertices labelled 1 to k.

The authors of [6, 7, 11, 13] proposed a blocked version BFW of the Floyd — Warshall Algorithm 2.
BFW divides set V of vertices into subsets V,...Vy.1 of size S and splits matrix D into blocks of size
S x S each, creating a block-matrix B[M x M], where equality M - S = N holds. Algorithm 2 performs
M iterations, each consisting of three phases: calculation of diagonal DO block By, ,, (accounts for paths
inside the subgraph on subset V,, of vertices); calculation of (M — 1) cross blocks B, of type C1
through block By, (accounts for paths from vertices of V, to vertices of V,,); calculation of (M — 1)
cross blocks By, of type C2 through block B, (accounts for paths from vertices of V,, to vertices
of V,); calculation of (M —1)? peripheral P3 blocks B,, through blocks B, and By (accounts for

m

paths from vertices of V, to vertices of V, passing through vertices of V). In B, , index m describes

the block calculation level. Algorithm 3 (BCA) calculates all three types of blocks. In [7], the authors
shown that BFW can be parallelized to PBFW due to all cross blocks can be calculated mutually in
parallel as well as all peripheral blocks. Algorithm 2 describes the parallelism by means of OpenMP
directives. In BFW, the blocks can be also calculated recursively [7].

Algorithm1: Floyd — Warshall FW Algorithm 2: Block-parallel Floyd — Warshall PBFW

Input: A number N of graph vertices
Input: A matrix W[N x N] of graph edge weights

Input: A number N of graph vertices
Input: An edge cost matrix W[N x N]

Output: Matrix DV of distances Input: A size S of block
D« W Output: A blocked matrix BM[M x M] of path distances
fork <~ 0toN-1do M« N/S BY«WwW
fori«~0toN-1do #pragma omp parallel
forj«0toN-1do form«OtoM-1do
dift « min(dly, dfy + d)) #pragma omp single
return DN B+l <« BCA (Bl B, B, // Diagonal DO
forv«0toM-1do
if v=m then
Algorithm 3: Block calculation BCA #pragma omp task united

B+t « BCA (BJ, By, Biiily 1l Cross C1

Input: Asize S of block
Input: Blocks E, F and H
Output: Block B
Fork<«0toS—-1do
Fori«O0toS-1do
forj«<~0toS—-1do
by ;<= min(e;j, fix + hy,;)
return B

#pragma omp task united
B+t « BCA (B, B, Bit,) Il Cross C2
#pragma omp task wait
forv«0toM-1do
if v m then
foru«<0OtoM-1do
if u= mthen
#pragma omp task united
Bl « BCA (B, Biiit Byiit) 1l Peripheral P3
#pragma omp task wait

return BM
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Fork-join parallelization potential. OpenMP parallelizes PBFW in the fork-join style. Since
diagonal block DO is computed in series to all parallel cross blocks C1 and C2, and all cross blocks are
computed in series to all parallel blocks P3, (1) estimates the speedup the PBFW provides over BFW
on P processors

speedup = MKH_Z(M ~1)/ P—\+|_(M —l)Z/P-‘ ?

The parallelization potential is quite non-uniform when considering the diagonal, cross and
peripheral blocks. Let P =8 and M = 4. Then, one step is needed for executing the diagonal block,
where 1 processor is loaded, and 7 processors stand idle. One step is needed for executing 6 cross
blocks, where 6 processors are loaded, and 2 processors stand idle. Two steps are needed for executing
9 peripheral blocks: in first step all 8 processors are loaded; in second step only 1 processor is loaded,
and 7 others stand idle. As a result, according to (1) the speedup of PBFW is 4 instead of expected
ideal 8.

The promising alternative to the fork-join is dataflow parallelism. In the paper we develop dataflow
networks which have such a property that the calculations of peripheral blocks can be moved over
iterations along m in Algorithm 2.

Reordering of block calculations. The authors of [7] proved the following assertion related to the
FW algorithm:

Claim 1. Suppose d

k+1

ij »k=0...N-1, is computed as

diifjﬂ = min(d.k diifl; + dlf,"j) 2

ij?

for k <k’, k” <N, then upon termination, the Floyd — Warshall algorithm correctly computes the all-
pairs shortest paths.

In BFW and PBFW, the diagonal block By of type DO is calculated through By for which all
Brln,m Bnr;“fml have been already calculated. The cross block B\Tr:l of type C1 is calculated through
B:mel and B, for which all Bjym Bv”jnjl have been already calculated. The same holds for the cross
block By of type C2. The peripheral block B;';* of type P3 is calculated through B/, B} and
B . We formulate and prove Claim 2 which relaxes the requirement to blocks B} and B[

Claim 2. Suppose P3-type block C.';* (that is block By," calculated by a different algorithm
BFW’), m=0...M-1, is computed as

Cl'=BCA(C/,, C/", Cn\) (3)

v,ur ~v,m

for m+1 <m’, m” < M, then upon termination, BEW" correctly computes the all-pairs shortest paths.
Proof. In BFW and BFW’, blocks D0, C1 and C2 are calculated in the same manner. Let prove by

induction that for P3-type blocks C.;" and B;*, 0 <m < M-1 the following inequality holds:

v,u !

C/it < B (4)

v,u !

which means inequality c;; < b;; for all pairs of matching elements of the corresponding blocks.

Base case. By definition we have C,, = B, =W, ,, therefore C;, < B{,,v,u=0...M-L1.
Induction step. Suppose the inequality as follows holds:
C/u<BJj,, v,u=0..M-1. (5)
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Then applying Algorithm 3 to the BCA call (3) we can conclude:

C/ut <BCA(B},, C/,. C\) (6)
<BCA(B/,, C/', Coih) (7)
<BCA(By,, B/.', Bov) < B/ (8)

Inequality (6) is inferred from (3) and (5). Inequality (7) is inferred from Claim 1 applied S times to
each element of block B calculated over blocks E, F and H in Algorithm 3 executed through the BCA
call of (6):

B = min (657, 657+ hET) < min (e, 15 + hE(™), ©
where S-m is the calculation level of elements of the block that is at level m of calculation.
Inequality (8) that proves (4) is inferred from (7) considering inequality (5) that is used to prove the

inequality C»' < B! of the type C1 blocks and to prove the inequality Ci'.\ < Bni! of the

type C2 blocks of the BFW” and BFW algorithms. All these blocks are calculated over the diagonal
blocks which meet (5).

On the other hand, since the traditional blocked Floyd — Warshall algorithm computes the shortest
paths at termination and (3) computes the length of some paths, we have:

B < O, (10)

It is derived from (4) and (10) that B, = C., which completes the proof.

vV,u v,u?

Claim 2 allows the delaying and reordering of peripheral blocks calculations. Such a reordering
was used in the multi-threaded all-pairs shortest path algorithm [12] realized using a cooperative
scheduler of threads.

Fig. 1, a depicts the estimated parallelization potential of the fork-join PBFW algorithm and the
parallelization potential of an algorithm PBEW” obtained from the former one by reordering of block
calculations and balancing the load of processors. To estimate the parallelization potential, a program
in C++ was developed which implements PBFW and its modification PBFW”. Fig. 1, b shows that the
reordering of block calculations can speed up the shortest paths parallel search up to 25 %. Moreover,
the speedup can increase in case when the block execution time is variable. It should be noted that the
gain of PBFW” against PBFW is being reduced with the growth of block count.

100

=== | 30

20 25

20
60
15
40
10

20

0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

-=--=- fj,P=8 ro, P=8  «esessees fi,P=32 — ——r0, P=32

P=g ——-pP=32

a) b)

Fig. 1. Processors load a) in percent (vertical axis) provided by algorithms PBFW (fork-join parallelism fj) and PBFW”
(reordering ro of calculations) for block-counts M = 2 to M = 32 (horizontal axis) on 8 and 32 processors P; and lower bound
of speedup b) in percent (vertical axis) PBFW” has against PBFW for block-counts M = 2 to M = 32 (horizontal axis)
on 8 and 32 processors P
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The BFW and PBFW are homogeneous in sense of calculating all blocks with the single BCA
function. The authors of work [11] extended the algorithms to heterogeneous ones that calculate the
blocks of types DO, C1, C2 and P3 using separate functions which operate faster than BCA.

Modelling block calculations by actors. A separate actor A, is put into accordance with each
block B,. of block-matrix B, which introduces a matrix A[M x M] of actors. The structure and
behavior of actor A, depends on two factors: 1) the size M x M of matrix B; 2) the location of B, in B
(diagonal and non-diagonal blocks). Fig. 2 shows diagonal and non-diagonal actors in matrices
A[2 x 2] and A[3 x 3]. The size M influences the number of input ports and the total number of
actions in the actor. The block location influences the structure and behavior of the actions
incorporated in the actor. In the paper, we assume that the actors have access to two global variables M
and B and assume that the actors’ ports represent the block calculation levels but the blocks themself.
Actor A may update block B, and may not other blocks in B.

In each actor A, the number of input ports equals 2 - (M — 1) and the number of output ports
equals two. The input ports describe calculation levels of other blocks located in row r and column c.
Both output ports describe the calculation level of block B, .. The overall number of ports and the actor
interface are the same for all actors of A, no matter the actor is diagonal or non-diagonal. Fig. 3 depicts
the input and output ports of the actor in matrices A[2 x2] and A[3 x3].

Fig. 2. Matrices a) A[2 x 2] and b) A[3 x 3] of diagonal and non-diagonal CAL actors

Ley Lo

Lcl

[_l
N Ly

w2 4.0 [OL 403) [OL

L

1 [
W L
L. L.

a) b)

Fig. 3. Interface of actor A, ;(M) that models calculation of block B,.. in matrix A[M x M]:
a) actor A, (2) and b) actor A, ¢(3)

In actors of A[2 x 2], input port L,; receives the token produced by another actor located in row r,
and L, receives the token produced by another actor in column c. Two output ports L, and L. of A,
send tokens describing the calculation level of B, to other actors in row r and column c respectively.
In matrix A[3 x 3], the actor interface has four input ports L, Ly, Lep and L, since the number of
blocks in row r and column c is increased to three.

The diagonal and non-diagonal actors have different internal structure and different actions.
Algorithm 4 depicts the behavior of a diagonal actor Block_D that models the calculation of block By,
in matrix A[2 x 2]. Input ports L_0_1 and L_1_0 describe the calculation level of blocks By, and B,
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respectively. Output ports Lrow and Lcol describe the calculation level of block By,. Variables Lev,
Row and Col that describe the calculation level, row, and column of By, represent the actor
internal state.

The actor contains three actions: diagonal, peripheral, and reset. Action Dig0 has no input, but two
output tokens (both equal Lev) directed to ports Lrow and Lcol. The guard condition requires
Lev = Row = Col. The action body increments Lev and calls the BCA function to recalculate block Bgg
over itself. According to the guard, the action is fired once. Action Perl has three input and no output
tokens. Tokens LO1 and L10 arrive from ports L 0 1 and L_1 0, and the third token is a constant
k =1. The guard condition requires Lev < L01 and Lev < L10. The action body increments Lev and
calls the BCA function to recalculate block By over blocks By, and B, o. The peripheral action is fired
when the input tokens have arrived, and its guard is satisfied. The Reset action sets Lev to 0. It is fired

when the block has been recalculated M times.

Algorithm 4: Diagonal actor Block_D for block Bggin A[2 x 2]

Algorithm 5: Non-diagonal actor Block_N for block By 1 in A[2 x 2]

actor Block_D (m) intL_0_1,intL_1_0==>int Lrow, int Lcol:

int Lev :=0; int Row := m; int Col :=m;
Dig0: action ==> Lrow: [Lev], Lcol: [Lev] /I DO
guard Lev = Row
do
Lev:=Lev+1;
BCA (B[Row, Col], B[Row, Col], B[Row, Col]);
end
Perl:action L_0_1:[LO1], L_1_0:[L10], 1:[kK]==>  //P3
guard LO1 > Lev and L10 > Lev
do
Lev:=Lev+1;
BCA (B[Row, Col], B[Row, k], B[k, Col]); /I P3
end
Reset: action ==>
guard Lev =M do Lev :=0; end
end

actor Block_N (v, u) intL_0_0,intL_1 1==>int Lrow, int Lcol:
int Lev :=0; int Row :=r; int Col :=¢;

Crs0: action L_0_0: [LO0] ==> Lcol: [Lev] /I C2
guard Lev=L00-1
do
Lev:=Lev+1;
BCA (B[Row, Col], B[Row, Row], B[Row, Col]);
end
Crsl:action L_1 1:[L11] ==> Lrow: [Lev] /I C1
guard Lev=1L11-1
do
Lev:=Lev+1;
BCA (B[Row, Col], B[Row, Col], B[Col, Col]); /I P3
end

Reset: action ==>
guard Lev =M do Lev :=0; end
end

Algorithm 5 describes a non-diagonal actor Block_N that models the calculation of block By, in
matrix A[2 x 2]. Two input ports are L_0_0 and L_1_1. The output ports and state variables are the
same as in actor Block_D. The actor contains two actions. Action Crs0 has input token LOO arriving
from port L_0_0 and has output token Lev sended to port Lrow. Its guard condition requires
Lev =100 - 1. The action body increments Lev and calls the BCA function to recalculate block Bg;
over diagonal block Bgy. CrsO is fired when a token arrives at its input port and its guard condition
evaluates to true. The behaviour of Crsl is like those of Crs0 except By is recalculated over B, ;. Each
of actions Crs0 and Crs1 is fired once.

Algorithms 6 and 7 describe the behavior of diagonal actor Ay, (Block_D) and non-diagonal actor
Ao1 (Block_N) that models the calculation of blocks By and By, in matrix A[3 x 3]. In Ay, One action
is Dig and all others are Per. In Ay, two actions are Crs and all others are Per. Compared to actors of
matrix A[2 x 2], the actors of A[3 x 3] have four input ports instead of two and have an additional
peripheral action each. The output ports and state variables are the same. Unlike the actor of A[2 x 2],
the Block_D of A[3 x 3] of Algorithm 6 contains two peripheral actions that are competitive in firing
and can be fired in arbitrary order. The actions’ guards are redundant and removed since their firing is

correctly managed by input tokens. Thus, block By, can have two firing sequences: 1) Bgyo , Béyo and

BOZ’O; 2) Bé’]o, BOZ’0 and Béyo. CAL and its implementations require to resolve such competitions in

advance by adding schedule and priorities. We do not follow this way since the order of firings of the
actions does not influence the computation result. We perform a relaxation of CAL, omit the schedule
and priorities in the actors and create our own multi-threaded implementation of CAL which resolves
the competitions by means of an appropriate mechanism of synchronizing concurrent actions.
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Moreover, we remove guards of actions Crs0 and Crs1 because the conditions they describe are fully
satisfied by the conditions of arriving tokens on input ports.

Algorithm 6: Diagonal actor Block_D for block Booin A[3 x 3] Algorithm 7: Non-diagonal actor Block N for block Boin A[3 x 3]
actor Block_D (m) intL_0_1,intL_0_2,intL_1_0,intL_2 0==>  actor Block N (v, u)intL 0 0,intL 0 2,intL_1 1,intL 2 1
int Lrow, int Lcol: ==>int Lrow, int Lcol:
int Lev := 0; int Row := r; int Col :=c; int Lev := 0; int Row :=r; int Col :=¢;
Dig0: action ==> Lrow: [Lev], Lcol: [Lev] sl Crs0: action L_0_0: [LO0] ==> Lcol: [Lev] Icz
guard Lev = Row do
do Lev = Lev +1,
Lev:=Llev+1; BCA (D[Row, Col], D[Row, Row], D[Row, Col]);
BCA (D[Row, Col], D[Row, Col], D[Row, Col]); end
end Crsl: action L_1_1: [L11] ==> Lrow: [Lev] /Icl
Perl:action L_0_1:[LO1], L_1_0:[L10], 1:[k] ==>// P3 do
do Lev := Lev +1,
Lev:=Lev+1; BCA (D[Row, Col], D[Row, Col], D[Col, Col]);
BCA (D[Row, Col], D[Row, k], D[k, Col]); end
end Per2: action L_0_2: [L02], L_2_1:[L21], 2:[k] ==>//P3
Per2: action L_0_2: [L02], L_2_0: [L20], 2:[K] ==>// P3 do
do Lev = Lev +1,
Lev:=Lev+1, BCA (D[Row, Col], D[Row, K], D[k, Col]);
BCA (D[Row, Col], D[Row, K], D[k, Col]); end
end Reset: action ==>
Reset: action ==> guard Lev = M do Lev :=0; end
guard Lev=Mdo Lev :=0; end end

end

Parallel dataflow networks of actors for shortest paths search. Composing actors into a
network, setting connections among their input and output ports, and allocating buffers to the
connections establish a dataflow network. The shortest paths search network structure depends on M.
Fig. 4 shows a graphical view and a CAL-code of the NW,, network constructed on matrix A[2 x 2].

network NWo, () = :

entities
AO00 = Block_D (0,0);
A01 = Block_N (0,1);
A10 = Block_N (1,0);
Al11 =Block_D (1,1);

structure
AQO. Lrow --> A01.L_0_0;
AQO. Lcol --> A10.L_1_1;
AOL. Lrow --> A00.L_0_1;
AOL. Lcol --> A11.L_1 0;
A10. Lrow --> Al11.L_0_1;
A10. Lcol --> A00.L_1 |
All. Lrow --> A10.L_0 0;
Al1l. Lcol --> AOL.L 1 1;

ol

end
a) b)

Fig. 4. Dataflow network NW,, constructed on matrix A[2 x 2] has 4 actors and 8 channels with buffers on them:
a) graphical view; b) CAL-code

NW,, consists of two diagonal and two non-diagonal actors, twelve actions and eight channels
annotated with produced and consumed token rates. All rates are 1. Every action of every actor is fired
once during the network operation. The diagonal Dig,, action of actor A, that is guarded with
Lev =m is fired once. It produces tokens, which are transferred to actions of cross non-diagonal actors
Any and A, on row m and column m. Since the tokens are produced once, the cross actions Crs, and
Crs, of the actors are fired once. The cross actions produce once and transfer tokens to actions of all
actors outside the cross, therefore, all the peripheral actions can be fired once.
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To prove the rate consistency of NW,,, we construct a combined balance equation for each channel
(Av.pi, A..p;) connecting output port p; of actor A, with token rate R(A,.p;) to input port p; of actor A,
with token rate R(A,.p;):

F(Av-pi) : R(Av-pi) = F(Au-pj) : R(Au-pj)i (11)

where F(A,.p;) is the number of firings of A, that produce tokens at p;, and F(A,.p;) is the number of
firings of A, that consume tokens at p;. For NW,,, the system of balance equations (11) is described
by (12)

F(Aopo.Lrow) - 1 =F(Ay1.L_0 0)-1

F(Aopo.Lcol) - 1 =F(AoL 1 1) -1

F(Ao1.Lrow) - 1 = F(Age.L_0 1) -1

F(Aoyl.LCOI) -1= F(Alyl.L_l_O) -1

F(Alyo.LrOW) 1= F(Alyl.L_O_l) -1 (12)
F(A]_’()LCOI) 1= F(Aoyo.L_l_O) -1

F(Ap1.Lrow) - 1 =F(A.L_ 0 0)-1

F(Aii.Lcol) -1 =F(Ag:.L 1 1)- 1.

Nk wNhE

Equations 1 and 2 of (12) are satisfied because the single firing of action Digy of actor Aqo (we
denote Aq.Digg) produces at ports Lrow and Lcol the tokens consumed by single firing of Aq1.Crsy
and single firing Ay ,.Crs; respectively. Equation 4 is satisfied as Aq1.Crsy is fired producing at Lcol a
token that is consumed by A, ;.Per;. Equation 5 is satisfied as A;.Crs; is fired producing at Lrow a
token that is consumed by A, ;.Per;. Equations 7 and 8 are satisfied because the single firing of action
Digo of actor A;; produces at ports Lrow and Lcol tokens consumed by firings A;o.Crsy and Ag;1.Crs;
respectively. Equation 6 is satisfied by the firing of A;0.Crsy producing at Lcol the token that is
consumed by Aqo.Per;. Equation 3 is satisfied by the firing of Aq;.Crsy producing at Lcol the token
that is consumed by Aq.Per;.

The Reset action of all diagonal and non-diagonal actors sets Lev to initial state O after firing of all
other actions. This guarantees the boundedness of FIFO buffers in NW,,. The following schedule
proves the liveness of network NWo,

AO,O.Digo, onl.CrSO, A1’0.CI"51, A1,1.Per1, A1,1.Dig0, Ao,1.Cr31, Al,o.CrSo and AO,O.Perl.

The firing of actions of different actors can proceed in series and in parallel. Fig. 5 depicts a rate-
consistent dataflow network constructed on matrix A[3 x 3], which obtains the properties of
boundedness and liveness. Therefore, the network supports the synchronous dataflow model (SDF) of
computation.

Fig. 5. Graphical view of dataflow network NW,; constructed of 9 actors
and 27 communication channels from matrix A[3 x 3]
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Generation of parallel dataflow networks of actors. Given a blocked matrix B[M x M], our goal
is to generate a matrix A[M x M] of actors and to establish connections between their input and output
ports, thus generating a dataflow network NWwuwm for shortest paths search. The key new result of the
section is a procedure of generating actors of two types and generating a network NWyw for
various M. In NWyw, the number of actors is M?. Each actor has 2 - (M — 1) input ports, 2 output
ports, and M actions.

Algorithm 8 generates the diagonal and non-diagonal actors for block B, . of matrix B[M x M]. It
adds the input and output ports and the state variables to each actor. Then, it creates actions. For the
diagonal actor Block_D modelling A, (r = ¢), it creates one diagonal action Dig, and M — 1 peripheral
actions Pery, k =0...M — 1, k#r. Action Dig, produces tokens at output ports Lrow and Lcol that are
transferred to 2-(M—1) input ports of other actors from row r and column ¢ of matrix A.

The peripheral actions of the diagonal actor are divided into two groups: Gé = {Per,,...,Per, 1} and

Gé = {Pery.1,...,Pery.}.

Algorithm 8 adds one cross action of type C1, one cross action of type C2 and M-2 peripheral
actions to the non-diagonal actor Block N representing A, ., r # c. Cross action Crs, calculates block
B.. of type C2 through diagonal block B, and produces a token at output port Lcol which is
transferred to M — 1 input ports of actors on column c. Cross action Crs, calculates block B, . of type
C1 over diagonal block B, and produces a token at output port Lrow which is transferred to M — 1
input ports of actors on row r. Let r < c. Peripheral actions Pery, k=0...M -1, k# r and k # ¢ of actor

Ar. are divided into three groups: Gy ={Per,...Per.}, G. ={Per....Per.;} and G =
={Perc....Pery}.

Algorithm 8: Generation of diagonal and non-diagonal actors (Generate_Actor)

Input: a number M of blocks (actors) in row (column)
Input: a row number r
Input: a column number ¢
Output: a generated actor Actor
if r = c then
Actor«CreateActor (“Block D”, r, ¢);
else
Actor«CreateActor (“Block N”, r, c¢);
fork«<O0toM —1do
if k = ¢ then Actor.AddInPort (r, k);
fork«O0toM —1do
if k = r then Actor.AddInPort (k, c);
Actor.AddOutPort (“Lrow”); Actor.AddOutPort (“Lcol”); Actor.AddStateVar (“Lev”, 0);
Actor.AddStateVar (“Row”, r); Actor.AddStateVar (“Col”, c);
if r = then
ActionDO0 « CreateAction (“Dig”, r);  Actor.AddAction (ActionDO);
fork« OtoM-1do
if k= r then ActionP3 « CreateAction (“Per”, k);  Actor.AddAction (ActionP3);
else
ActionC1 «CreateAction (“Crs”, ¢);  Actor.AddAction (ActionC1);
ActionC2 «CreateAction (“Crs”, r);  Actor.AddAction (ActionC2);
fork« O0toM-1do
if k= rand k = c then ActionP3 «—CreateAction(“Per”, k); Actor.AddAction(ActionP3);
return Actor;

Once the actors are created, Algorithm 9 generates connections among them. It traverses all actors
identified by ID_Dest and Actor_Dest and considers them as destinations. For each destination actor,
the algorithm takes every input port Port Dest and selects a single source that is an actor
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(ID_Source, Actor_Source) and its output port (Port_Source). The first loop along variable p goes
over destination ports and their sources of column c, and the second loop along variable p goes over
destination ports and sources of row r.

The generated dataflow network NWyw has the properties of rate consistency, boundedness, and
liveness. The behavior of actors and actions in the network is correctly synchronized. Each actor
calculates its own block; therefore, no conflicts occur between the actors. In the diagonal and non-
diagonal actors, all actions are connected to distinct input ports, which guarantees that the same token
cannot be consumed by different actions; it leads to the independent firing of actions.

Algorithm 9: Generation of connections between actors (Connect_Actors)

Input: a number M of blocks in row (column)
Output: a CAL network NW

forr<0toM—1do

forc <« 0toM— 1do
ID_Dest < r x M +c;
Actor_Dest«—AcatorName (r, c);

forp«0toM— 1do
if p=rthen
Port_Dest«PortName (p, ¢); ID_Source <— p x M +c;
Actor_Source «— AcatorName (p, ¢); Port_Source < “Lcol”;
NW.AddConnect (ID_Dest, Actor_Dest, Port_Dest, ID_Source, Actor_Source, Port_Source);

forp«0toM— 1do
if p = c then
Port_Dest «— PortName (r, p); ID_Source «—rx M + p;
Actor_Source«—AcatorName (r, p); Port_Source < “Lrow”;
NW.AddConnect (ID_Dest, Actor_Dest, Port_Dest, ID_Source, Actor_Source, Port_Source);
return NW;

If block Blk of level k is used directly (or over other blocks) for calculating block B; to level I, we
denote it with precedence Blk = BJ}. It can be observed from Algorithm 2 that in BFW the
precedence B}, = B}." holds for all v, u, m=0 ... M— 1. In NWyy, a precedence relation between
block calculations exists, which determines a partial order of firing actions.

Claim 3. In the diagonal CAL-actor Block_D processing block B, ., actions of Gé are fired

before action Dig,, and actions of G are fired after Dig,,. Actions of Gy, as well as actions of G2

can be fired in any order with respect to each other. Then NWyw correctly computes the shortest paths
between all pairs of vertices.

Proof. In BFW, BY . = BX™ k=0 ... m hold. Actions of Gg calculate block B, from level

m,m

BY , to levels Bl ... BY. . Action Dig, calculates the block to level BT} and actions of G

m,m

calculate it to levels By:2 ... B respectively. The diagonal block calculations hold the following:

1. For block type DO, block By, must be calculated to level m before calculating Banml. It can be
only done by calculating By, ... B through By, B;,, ... By, Br, . while considering the
block as of type P3. Then in NWyy, B, = BT ... BI'! = B hold. The actions of Gy, are

m,m
fired before action Digp,.
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2. The precedencies B+ = Br> ... Bl = B

m,m m,m

are derived from the fact that Byw2 ... B
are directly or indirectly calculated through Br;“;nl.

3. The CAL network can reorder BX and B k=1...m—1, for three reasons: a) the block

m,m m,m?

calculations are independent and, therefore, do not precede each other since B, is calculated at
levels k and k+1 by accounting for paths between vertices of V,, passing through vertices of non-

intersected subsets V, and V,;; b) Claim 2 allows the calculation of B . through B, and B, of

higher levels of k> > k and k” > k; c) the operation of choosing a minimum of two numbers is
commutative and associative.
4. Assertions like those of point 3 are proved for the case whenk=m+1 ... M -1.

Points 1 and 2 prove that in Block_D actions of GlD are fired before action Dig,, and actions Gé

are fired after Dig,,.. Points 3 and 4 prove that actions of GlD (as well as actions of Gé ) can be fired in
any order with respect to each other in Block_D. The claim is proved.
Claim 4. In the non-diagonal CAL-actor Block_N, which processes block B, ,, v # u, actions of

G,, are fired before action Crs,, actions of G are fired after Crs, and before Crs,, and actions of

G, are fired after Crs,. In each of three subsets G},, G and G the actions can be fired in any

order with respect to each other. Then NWwwm correctly computes the shortest paths between all pairs
of vertices.

Proof. Let v<u. Actions of Gy calculate block B,, from level B!, to levels B, ... B,.
Action Crs, calculates the block to level B):' and actions of G; calculate it to levels B> ... B,.

Action Crs, calculates the block to level B\ and actions of Gy, calculate it to levels B!!” ... B}".
The following precedencies hold for the non-diagonal block calculations:
1. Since the block type C2 establishes precedence B,, = B/ block B, ., must be calculated to

v,u
v+l
v,u

level v before calculating B, ". The only way is to perform calculations Bvlyu va,u by considering

the block as of type P3. In this case, B,, = B;,... B}’ = B}, hold.

2. Since the block type C1 establishes precedence B,, = B'*  block B, must be calculated to

v,u 1

level u before calculating Bv“,:l. The only way is to perform calculations of BVVLZ ... By, after
calculating B).' by considering the block as of type P3. Therefore, precedencies vaf =
B,. ... By, = By, hold.

3. The precedencies By = B}:’ ... B,' = B, are derived from the fact that B,;’ ... B,

u v,u v,u

u+l
v,u -

can only be calculated through B

4. NWiwm can refuse the precedence B, = B/, m=1 ... v—1and can reorder B}, and B

for three reasons: a) the calculations are independent and, therefore, do not precede each other since
B, , is calculated at levels m and m+1 by accounting for paths between vertices of subsets V, and V,

v,u
passing through vertices of non-intersected subsets V., and V., ; b) Claim 2 allows the calculation of

BJ, through By, and B}, at higher levels of m* > m and m” > m; c) the operation of choosing a

minimum of two numbers is commutative and associative.
5. Similar assertions are proved for the case whenm=v+1 ...u-landwhenm=u+1...M-1.
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Points 1, 2 and 3 prove that in Block N the actions of G; are fired before action Crs,, the actions
of Gf, are fired after Crs, and before Crs,, and the actions of G,‘Z’ are fired after action Crs,. Points 4

and 5 prove that the actions of Gﬁ, (as well as of G,ﬁ and Gf, ) can be fired in any order with respect
to each other in Block_N. The claim is proved.
The number of possible firing sequences of actions of diagonal actors is |G1D| I |G§, | 'and is |GﬁI

|1-|GX|1- |Gy |! of non-diagonal actors, where |G| ! is factorial of G’s cardinality. The number

rapidly increases with the growth of M.

CAL-network development tool and tunable dataflow CAL-engine in C/C++. Based on the
C/C++ language we have developed a tool for creating parallel networks of dataflow actors and have
developed a tunable multithreaded CAL-based engine (fig. 6) for multicore systems. The tool and
engine were used for the realization of the proposed dataflow CAL-actors and parallel networks,
which solve the all-pairs shortest path problem. In the current version of engine, any action of any
actor is implemented by a separate thread, although we consider other solutions of mapping actors to
threads. Since many concurrently and asynchronously operating actions (threads) can simultaneously
update shared resources, synchronization primitives protect the resources. The concurrent
asynchronous behavior is a source of increasing the throughput of the networks and speeding up the
shortest paths search against OpenMP.

Fig. 6 depicts a flexible architecture of the tool and engine. It provides methods of specifying and
generating actors, connections and whole network for the problem under solving. The generators
process the specifications and elaborate a parallel dataflow network in an internal format.
A multithreaded CAL-based engine is firstly tuned to the network and then implements it on a multi-
core system.
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| ; generation | i
i A ] !
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1 . I B ——— . 'Execution of network :
Pl [ TR
UG ecificati ! I Hoo :
' |1 Specification of CAL- | ! oo i
| I} actor generation rules T " | Generator of actors L‘ ! AEimE H Lo Input data
Ly il | b
Ll |
N I o Lo
8 Problem : } Network of I« || Multi-threaded CAL
I formulation | | dataflow actors P Engine

Il | | | Do
! ‘r*"é"’if:’"i’"’f’"}l [Tt 1l : :

i [RETEIENEr o Il Connections and |l ' | l
' I generation rules for L,/ Generator of - buff. 1 i Output data

‘ uffers |

]
i

T Nk |

iMethods of connectioni !
generation

Fig. 6. Architecture of CAL-based development tool and tunable CAL-engine implemented in C/C++

Although the actions may be fired (executed) within one actor only in series, the engine parallelizes
the actions’ implementations regarding their readiness and selection before firing. It can execute the
action in parallel with checking if another action is ready to be fired next (the FSM state, the
availability of action’s input tokens, the guard condition, and the availability of output ports to receive
the produced tokens are considered). To have this property, the CAL-engine implements each action
by a separate thread.
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The advantage of our CAL-based implementation is the integration of CAL in C/C++ in such a
way that all facilities of C/C++ become available for the implementation. C/C++ classes of objects
implement all components of the CAL-actor and network. As a result, the network and each of its
actors are instantiated over complex data structures and sets of methods written in C/C++. The body of
each action is represented as a function in C/C++. To ensure that the implementation is consistent with
the CAL model of computation, we have developed a tool for checking and validating the structure.

Experimental results. In the paper, we report results given by the implementations of the dataflow
parallel networks and OpenMP based implementations of the PBFW algorithm on multi-core systems.
The networks of dataflow actors were generated from various block-matrix configurations and block
sizes and implemented in C/C++ with the threaded CAL engine. The results are obtained on randomly
generated simple complete weighted directed graphs of 1200, 2400, 3600 and 4800 vertices on four
Intel(R) Core(TM) processors i3-550, i5-5200U, i7-9750h and i7-10700. The graphs provide high
computational load which gives a correct comparison of the implementations. Table describes
processors’ parameters.

Parameters of four multi-core processors

Processor CacQtla3 L1, Caclztla3 L2, Cacl\t)ltle3 L3, Fregﬁgcy, Cores ph)?:%;&cl)lrs
i7-10700 8x 64 8x 256 16.0 2.90 8 16
i7-9750h 6 x 64 6 x 256 12.0 2.60 6 12
i5-5200U 2 x 64 2 x 256 3.0 2.20 2 4
i3-550 32+64 2x256 4.0 3.20 2

Fig. 7 and 8 show the speedup the dataflow CAL-networks and their multi-threaded implementations
have given against matching single-thread implementations of the Floyd-Warshall Algorithm 1.
The block count M in matrix B varied in the range 2 to 10. The number of actors varied in the range 4
to 100, the number of actor input ports varied in the range 2 to 18, and the number of output ports
was 2 for all actors. The number of actions within actor varied in the range 2 to 10, therefore, the
number of threads in the network implementations reached up to 1000. The optimal number Mg of
blocks has given the highest speedup of the CAL-networks.

On the 2-core i3-550 processor and the graph of 1200 vertices (fig. 7, a), the CAL-network has
given the speedup of 2.57 at My, = 4. For larger M the speedup has reduced to 1.61. On the graph of
2400 vertices, the highest speedup of 2.45 is also obtained at M, = 4. For both graphs, the speedup is
larger than the number of cores. For the 2-core i5-5200U processor and the graph of 1200 vertices
(fig. 7, b) we can observe the similar pattern, where the highest speedup of 2.51 is obtained at Mo = 4.
The increase in the graph size to 2400 and 3600 shifts the value of M, from 4 to 8 (speedup is 2.54)
and then to 10 (speedup is 2.55). We can mainly explain this as the CAL-networks exploit the
processor hierarchical memory and caches more efficiently for lower size of block.

4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11

=
[

— A= —5=1200 - -8 - S5=2400 ——&--5=1200 ---W---S=2400 —&— S=3600

a) b)

Fig. 7. Speedup (vertical axis) of multi-threaded CAL-networks against single-thread FW vs. block count M (horizontal
axis) on a) i3-550 and b) i5-5200U processors for three sizes of graphs: 1200, 2400 and 3600 vertices
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On the 6-core i7-9750hprocessor and the graph of 1200 vertices (fig. 8, a), the CAL-networks have
given the maximum speedup of 4.98 at My, = 6, which is smaller than the number of cores due to the
insufficient potential parallelism and low useful load (see fig. 1, a). On the graphs of 2400 and 3600
vertices, the highest speedups of 6.59 and 6.96 are obtained at My, = 8 and Mgy, = 6 respectively. In
both cases, the speedup exceeds the number of cores. On the 8-core i7-10700 processor, the speedup
patterns by the CAL-networks are very close for graphs of 2400, 3600 and 4800 vertices (fig. 8, b).
For all graphs the maximum speedup of 9.78, 9.37 and 9.34 is obtained at M, = 10. Fig. 8, b also
shows the speedup given by OpenMP on the three graph-sizes, which is significantly less against the
networks. The speedup is being decreased with the growth of the graph-size and is being increased
with the growth of the number of blocks. It can be observed that the CAL-networks convincingly gain
the BFW OpenMP implementations with respect to runtime.
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Fig. 8. Speedup (vertical axis) of multi-threaded CAL-networks and OpenMP-BFW implementations against
single-thread FW vs. block count M (horizontal axis) on a) i7-9750h and b) i7-10700 processors for four
sizes of graphs (omp2 — 2400, omp3 — 3600 and omp4 — 4800 vertices)

According to (1), the estimated speedup of the block-parallel Floyd — Warshall algorithm
implemented in the fork-join style (OpenMP) is 1.33, 3.00, 4.00, 6.25, 5.14, 6.40 and 6.66 for M = 2,
3, 4,5, 6,8, 10 respectively on 8 cores. For comparison, the networks have given on i7-10700 and on
the graph of 2400 vertices much higher speedup of 1.72, 3.35, 5.68, 7.90, 8.31, 9.01 and 9.78
respectively for the same values of M. We can mainly explain this by efficient exploitation of caches
and advantages of the networks and their threaded parallel implementations due to highly
asynchronous behaviour.

The graphics depicted in fig. 7 and 8 have found out the patterns as follows:

1. There is an optimal number M,y of blocks for which the speedup by the multithreaded CAL-
networks is the highest compared to the single-thread FW.

2. The highest speedup given by the dataflow networks exceeds the number of cores, which is a
very good result for the blocked algorithm with strong data dependences between blocks.

3. Myt depends on the number P of cores, the block-matrix size M, the graph size N, and the
scheduler of threads of the operating system.

4. The increase in the size M of matrices B and A increases the amount of parallelism in the CAL-
networks, which leads to the growth of computation speedup.

5. The larger number P of cores requires more parallelism and therefore larger Moy

6. The growth of the graph size N usually leads to the increase of M,y as the processor caches
operate more efficiently at smaller block sizes [13].

7. The CAL-networks give the speedup which is higher than that OpenMP gives.

It should be noted that the scheduler of threads of the operating system influences the order of
executions of threads, and the increase in M increases the number of threads in the CAL-network
implementations which increases the workload of the operating system.
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Conclusion. Nowadays, the blocked Floyd — Warshall algorithm is typically parallelized in the
fork-join style with OpenMP where each block is calculated in a loop level-by-level. The paper has
proven that the block calculations can be reordered, thus increasing the load of cores in the multi-core
system. The simulation tool has shown that the reordering can speed up the shortest paths search up
to 25 %. The paper has proposed a novel method of generating dataflow networks of CAL-actors,
where the management of actor and action firing is carried out over the block calculation levels.
The new feature of the networks is that in each actor the executions of actions are ordered partially.
The multi-threaded tuneable CAL-engine accounts for the feature and implements the networks in
C/C++. The experiments on large complete directed graphs and four multi-core processors have shown
that at optimal block count the networks speed up computations against the single-threaded
implementations by the following figures: i3-550 (2 cores) — 2.57 (28.5 % higher than core count);
i5-5200U (2 cores) — 2.55 (27.5 % higher than core count); i7-9750h (6 cores) — 6.96 (16.0 % higher
than core count); i7-10700 (8 cores) — 9.78 (22.3 % higher than core count).
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