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Abstract. In recent years, electroencephalography-based navigation and communication systems for differentially 
enabled communities have been progressively receiving more attention. To provide a navigation system with 
a communication aid, a customized protocol using thought evoked potentials has been proposed in this research 
work to aid the differentially enabled communities. This study presents the higher order spectra based features to 
categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for 
navigating a robot chair and also for communications using an oddball paradigm. The proposed system records 
the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving 
seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms 
and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2. 
The frequency band signals are segmented into frame samples of equal length and are used to extract the 
features using bispectrum estimation. Further, statistical features such as the average value of bispectral 
magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted 
feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is 
observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification 
accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum 
classification accuracy of 68.52 %. 
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Аннотация. В последние годы все больше внимания уделяется навигационным и коммуникационным 
системам на основе электроэнцефалограммы головного мозга для сообществ с разными возможностями. 
Для предоставления навигационной системе вспомогательных средств связи в работе предложен нас-
траиваемый протокол, использующий вызванные мыслительные потенциалы, чтобы помочь сообщест-
вам с разными возможностями. Представлены функции, основанные на спектрах более высокого поряд-
ка, для классификации семи основных задач, таких как Вперед, Влево, Вправо, Да, НЕТ, Помощь 
и Расслабление, которые можно использовать для управления креслом-роботом, а также для связи 
с использованием необычной парадигмы. Предлагаемая система записывает восьмиканальный беспро-
водной сигнал электроэнцефалографии от десяти субъектов, в то время как субъект воспринимал семь 
различных задач. Записанные сигналы мозговых волн предварительно обрабатываются для удаления 
интерференционных волн и сегментируются на сигналы шести частотных диапазонов: дельта, тета, 
альфа, бета, гамма 1-1 и гамма 2. Сигналы полосы частот сегментируются на выборки кадров равной 
длины и используются для извлечения признаков с использованием оценки биспектра. Кроме того, 
статистические характеристики, такие как среднее значение биспектральной величины и энтропия с ис-
пользованием области биспектра, извлекаются и формируются как набор характеристик. Извлеченные 
наборы функций проходят десятикратную перекрестную проверку с использованием классификатора 
многослойной нейронной сети. Результаты показали, что энтропия модели классификатора на основе 
характеристик биспектральной величины имеет максимальную точность классификации 84,71 %, а сред-
нее значение модели классификатора на основе характеристик биспектральной величины – мини-
мальную точность классификации 68,52 %. 
Ключевые слова: интеллектуальное кресло-робот с коммуникационными средствами, вызванные 
мыслительные потенциалы, оценка биспектра (B (f1, f2)), многослойная нейронная сеть 
Для цитирования. Интеллектуальное кресло-робот со вспомогательными средствами связи с исполь-
зованием откликов TEP и характеристик диапазона спектра более высокого порядка / С. К. Натарадж [и др.] // 
Информатика. – 2020. − Т. 17, № 4. – С. 92–103. https://doi.org/10.37661/1816-0301-2020-17-4-92-103 

 
Introduction. Movement and communication are the basic needs of human beings in their daily 

life and to live a meaningful life with interpersonal interactions [1]. Neuromuscular Disorder patients, 
such as Amyotrophic Lateral Sclerosis, neurodegenerative disease, muscular dystrophy, high cervical 
injuries or loss of the ability to speak (due to an accident) and Brain Stem Stroke have their walking 
abnormalities due to postural Instability and difficulty in communication with others due to loss of 
muscle control and speech [2–4]. Over the last decade, there has been an increasing attention on these 
patients to provide a navigation system and communication aid to enable them to lead a normal life 
[5–9]. In recent years, variety of BMI applications have arisen, Encouraged by new understanding of 
the non-invasive acquisition of human perception using powerful EEG amplifiers [10, 11], e. g. for 
cursor movement, acupuncture in pain relief [12], Neuro-prosthetic arm [13] and whole body 
movement [14], driver sleepiness detection [15], smart-living environmental control [16]. Currently, 
this research has been directed towards wheelchair navigation control and recognition of unspoken 
speech utterances without voluntary muscle activity [17–20].  
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Recently, several studies have examined thought evoked potential (TEP) based design of robotic 
wheelchair control using human thoughts [21], and communication systems using P300 speller and 
oddball paradigms [22]. Yet, the data acquisition protocols have shown a vital role in redefining the 
claimed action to command a navigation system or a communication system. The research work             
proposed by Kaufmann et al [17], involves positioning of four tactile stimulators and delivers 
navigation by concentrating their considerations on the desired tactile stimulus in an oddball paradigm 
to control the wheelchair. The results were validated through the participants navigating a virtual                       
wheelchair. Theresa M. Vaughan [23], Frank H. Guenther [19] and Anne Porbadnigk [20] have                  
developed several alternative communication systems using the recent developments in personal 
computers and new prosthetic methods to provide communication and control channels to individuals 
with difficulties in communication. Despite, none of the systems have produced an expanded 
utilization of the BMI technology to facilitate both navigation and communication through a 
customized brain activity recording protocol. Thus, in this study it is proposed to develop a 
customized thought controlled intelligent robot chair with communication aid (IRCC), as an initial 
step towards the possibility of navigation and speech production using a simple thought response 
based protocol (fig. 1). Depicts the block diagram of the proposed customized classification system for 
robot chair control along with a communication aid. 

 
Fig. 1. Block diagram of the proposed thought controlled IRCC 

 

The motivation towards this research is to establish a simple robot chair along with a 
communication aid, that can be used by an differentially enabled person, to control a wheel chair and 
to communicate their needs with others using TEP’s. A simple data acquisition protocol has been 
proposed to develop the thought controlled IRCC; the tasks (Forward, Left, Right, Yes, No and Relax) 
were initially simulated and the subjects were requested to imagine during the data acquisition 
process. Further, the subjects were taught to pronounce the word loudly for the ‘Help’ task. The EEG 
signals are recorded for 12 sec. for each trial per task and are segmented into 10 sec. during the               
pre-processing stage for uniformity. In the pre-processing, the recorded brain wave signals were                   
band-passed filtered in the frequency range of 0.5 to 100 Hz and segmented into six frequency bands 
Delta ( )δ , theta ( )θ , alpha ( )α , beta ( )β , Gamma 1 ( )γ1 and Gamma 2 ( )γ2 . Thus, frequency band signals 
are segmented into frame segments (512 samples) and used to extract the features using higher order 
spectra (HOS) technique. The general motivation behind the use of bispectrum estimation is to detect 
and characterize the nonlinear properties of the TEP tasks, and they are potentially better to estimate 
the deviations from Gaussianness (normality) [24–26]. Thus in this study, the third order statistics 
bispectrum based feature extraction method has been implemented to extract the features from each 
frame of frequency band signals over each electrode position and the features such as the Mean of 
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bispectral magnitude (M) and the bispectral entropy features (E) were extracted. The non-linear 
features were extracted and associated with the corresponding TEP tasks. Then, the extracted feature 
sets were modeled using a supervised learning-multilayer neural network (MLNN) classifier and the 
classification performance was validated. The research methodology and the developed model results 
are explained in the subsequent sections of this paper. 

Intelligent robot chair with communication database. The experimental setup and data 
acquisition procedures were implemented in the research lab at the School of Mechatronic 
Engineering, University Malaysia Perlis. The proposed study has been registered and approved from 
National Medical Research Registration (NMRR ID: NMRR-13-51-14570) and obtained Ethical 
approval from The Medical Research & Ethics Committee (MREC), Ministry of Health Malaysia. 
(Ref:(7)dlm.KKM/NIHSEC/800-2/2/2Jld2P13-179). This section elucidates some fundamental 
methods on the experimental setup which includes the wireless bio-amplifier setup and the placement 
of electrode channels for brain wave recording. Further, Suitable task selection, the data collection 
procedure and the formation of IRCC database were also presented. These processes are essential for 
the classification of thought evoked potentials to command an intelligent robot chair with 
communication aid. 

Experimental setup and data acquisition tasks. In the experimental setup, a standard bio-signal 
acquisition system developed by ‘g-mobilab+’ 8-channel EEG data acquisition system was used to 
record the brain wave signals [27, 28]. The system consists of an electrode cap with nine differential 
screwable electrodes, bio-signal amplifier and wireless data acquisition using MATLAB® interactive 
programming environment. In this study, it is proposed to develop a BMI system which can be used to 
navigate the wheel chair and communicate with others using an oddball paradigm; through brain wave 
EEG signals when functional communications are disabled [29]. Thus, in the data acquisition protocol, 
three primary tasks that address the navigation of the robot chair and to select the isolated words in an 
oddball paradigm, such as Left, Forward and Right hand movement control are included. Further, 
three additional tasks have been included to use in emergency circumstances and to address the basic 
needs of a human being, they are Help, Yes, No tasks. Relax (normal) has been used as the reference 
signal in this experiment [30]. A semi-sound controlled room was used for the acquisition where the 
subjects were remained in a pleasant circumstance. The subject carried out seven different tasks. 
The EEG signals are recorded while the subject was settled comfortably and remained in totally static 
posture. No overt actions were made during the 12.0 sec. of the data acquisition process (fig. 2) 
depicts the tasks that were implemented using the TEP responses to command an IRCC. 

 

 
Fig. 2. Preliminary representation of the tasks (10.0 sec.) for subject to conduct 

the thought response data acquisition process 
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The system records the motor imaginary signal from the eight electrode positions such as Temporal 
(T3, T4), central (C3, C4), parietal (P3, P4), and occipital (O1, O2) while the subjects were 
performing the seven thought response tasks. In the electrode placement system, reference recording 
schemes were used. The electrodes are placed on T3, T4, C3, C4, P3, P4, O1 and O2 position with one 
common electrode on the left ear lobe of the body where potential remains fairly constant [31, 32]. 
The proposed IRCC system captures the brain wave patterns in order to identify the rhythmic activity 
for the seven different thoughts of an individual. Thus, during data collection, the EEG signals were 
recorded at a sampling rate of 256 Hz from a grid of 8 Ag/AgCl scalp electrodes which were placed on 
the scalp according to the international 10–20 lead system [31, 32]. The electrodes are placed on the 
scalp of the selected locations and tested for level of impedance using g-tec impedance checker. 
The impedance level was also tested after completing and maintained below 10 KΩ.  

TEP data acquisition and IRCC database. In the data acquisition process, ten healthy             
BMI-naive volunteers (eight male, aged 21–30 years and two female, aged 24 years) were 
participated. During the data acquisition of each task, the subjects were requested to view the 
simulation of the specific task on the LCD monitor as depicted in fig. 2(1) to fig. 2(7) until recording 
all the trials. The simulation depicts the movement of a joystick moving left, forward and right 
movement for the left, forward and right directions respectively. For the additional tasks like ‘Yes’ 
and ‘No’, the simulation presents a volunteer performing head movements up-down and left-right 
movements and for ‘Help’ task, the subject was requested to pronounce imaginarily the word ‘help’ 
respectively. Then, the subject was requested to imagine the tasks as simulated on the monitor. When, 
the subject performs a specified task, the EEG signals emanated were recorded for 12.0 sec. from 
Parietal (P3 and P4), temporal (T3, T4), central (C3, C4), occipital (O1, O2), positions. Ground 
electrode and reference electrodes are placed in the Fpz position and left earlobe locations in order to 
make individual’s thought evoked tasks, recording comparable over time and to another individual’s 
record, International 10–20 system was used for the electrode placement [28, 31, 33]. 

The procedure of thought stimulus took the following format: 
1. A simulation was presented on the LCD monitor (Left task) for 10 sec. 
2. A 1 KHz tone (beep) sounded, the monitor displays the simulation of a moving joystick in left 

direction.  
3. Then the monitor is turned off, the subject was given a time break of 5 sec. and requested to 

imagine the respective task. 
4. The bio-signal recording was carried out for 12 sec. while the subjects performing the task. 
5. The subject was given a time break of approximately two minutes after completing each trial. 
6. The simulation continued until ten trials were performed. 
7. Similarly, the next task simulation in the procedure was presented. 
*Note that eyes remain open in all the mental tasks. 
The recorded EEG signals are contaminated with unknown noise component lying within a                

50–60 Hz frequency range, which are due to power-line noises. A simple first order IIR notch filter 
was designed for removing the Power line noise from the recorded EEG signals. The center frequency 
of the filter, F0 was chosen to be at exactly 50 Hz and the bandwidth, ΔF = 4 Hz. Then, the signals are 
converted into digital signals using a sampling frequency of 256 Hz simultaneously, the acquisition 
process was repeated 10 times for each task and the subject was requested to take a rest for ten 
minutes after each task. Similarly, this procedure was repeated for ten subjects and the recorded 
signals were combined and a database was formulated. The database was named as IRCC database. 
The IRCC database consists of data pertaining to 10 different subjects (for 7 tasks and each was 
performed for 10 trials). The collected database was validated using analysis of variance (ANNOVA) 
technique and the significance level of 4.29×10–4<p value was obtained when validated on a task basis. 

Feature extraction using bispectrum estimation 
Preprocessing. In the preprocessing stage, the 16-bit digitized signals with 256 Hz sampling 

frequency were trimmed to segregate the intermediate 10 sec. signals from 12 sec. signal. The trimmed 
raw signals are filtered to remove the artifacts and EMG’s below 0.5 Hz and above 100 Hz using 
6th order band pass filters [34]. The segmented brain waves are categorized into six traditional 
bands: Delta (δ) 0.1–4 Hz, Theta (θ) 4–8 Hz, Alpha (α) 8–16 Hz, Beta (β) 16–32 Hz, Gamma 1, 
γ1 (32–64 Hz) and Gamma 2, γ2 (64–100 Hz). 
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Thus, each frequency band signals are segmented into frames such that a frame length of 2 sec.  
having 512 samples per frame along with an overlap of 1s (m = 256 samples). Thus, the first frame 
consists of n = 512 samples. The second frame was initiated after a lap of m-1 samples such that the 
second frame overlaps with the n-m samples of the first frame. This procedure was repeated until all 
the frequency band signals were counted. Then, each frame is considered as an input to extract the 
higher order spectra also known as polyspectral representations of higher order statistics. 

Bispectrum estimation. In various BMI applications, EEG signals have been analyzed using power 
spectra in several distinctive frequency bands. The power spectrum estimation provides the good 
statistical description of signals with an arbitrary distribution function. Moreover, power spectrum 
representation gives us the full canonical description in the case of stationary signals. In case of non-
gaussianity or non-linear mechanisms, Higher order spectra can be used to determine the higher order 
moments or complaints which provide additional information on the phase characteristics and realistic 
information of the EEG signal [24]. In this paper, bispectrum B(f1, f2) analysis has been employed to 
study the brain wave patterns of the visual stimuli. The bispectrum estimation is particularly the third-
order statistics of a signal, which represents the Fourier transform of the third order correlation with 
highly interdependent frequency components [24, 35]. The mathematical representation of the 
bispectrum estimation is expressed in equation 

 
𝐵𝐵(𝑓𝑓1,𝑓𝑓2) = 𝐸𝐸[𝑋𝑋(𝑓𝑓1)𝑋𝑋(𝑓𝑓2)𝑋𝑋∗(𝑓𝑓1 + 𝑓𝑓2)],                                               (1) 

 
where X(f) is the DFT at frequency samples x(nT), using the FFT algorithm. The frequency (f) may be 
normalized by the Nyquist frequency to be between 0 and 1. 𝑋𝑋∗(𝑓𝑓1 + 𝑓𝑓2) denotes complex conjugate 
and therefore the bispectrum obtained using equation (1) is a complex valued function which 
represents the product of three Fourier coefficients. In this feature extraction process, the non-
redundant region or the positive bispectrum sequence (Ω) = 0 ≤ 𝑓𝑓2 ≤ 𝑓𝑓1 ≤ (𝑓𝑓1 + 𝑓𝑓2) ≤ 1 has been 
used to extract the Mean of bispectral magnitude features and the whole bispectrum region of 
computation has been used to extract the and grand mean of the bispectral magnitude features 
respectively.  

To extract the 𝐵𝐵(𝑓𝑓1,𝑓𝑓2) sequence in frequency domain, the EEG signal acquired from each channel 
were used to extract the six frequency band signals, namely Delta (δ), Theta (θ), Alpha (α), Beta (β), 
Gamma 1 (γ1) and Gamma 2 (γ2). Each frequency band signals were segmented into frames such that 
each frame has 512 samples. The positive fourier coefficients of 𝐵𝐵(𝑓𝑓1,𝑓𝑓2) was estimated in the thi  frame 
of each channel. Thus the bispectrum sequence for 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)δ𝑖𝑖

𝑗𝑗  was obtained from δ band, where i and j 
are the frame numbers and an electrode channel number respectively. Similarly, the bispectrum 
sequence for 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)θ𝑖𝑖

𝑗𝑗 , 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)α𝑖𝑖
𝑗𝑗 , 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)β𝑖𝑖

𝑗𝑗 , 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)γ1
𝑗𝑗  and 𝐵𝐵(𝑓𝑓1,𝑓𝑓2)γ2𝑖𝑖

𝑗𝑗 , were also computed.  
From the estimated sequences, two statistical features, namely, Mean of bispectral magnitude (𝑀𝑀) 

and bispectral entropy (𝐸𝐸) features are computed to characterize the distribution of bispectrum sequence 
as well as to minimize the dimension of the feature vector as shown in equation (2), (3). Therefore, for 
eight channels we have 48 (6×8) features per frame. The statistical features are extracted from all the 
trials and are used to form the feature set. Simultaneously, the features are derived from each task and 
the corresponding feature set consisting of 5600 samples are formulated and used to train and test the 
classifier models 

 

( ){ ( ) ( ) ( ) ( ) ( )}, , , , , , , , , and ,1 2 1 2 1 2 1 2 1 2 2 1 2δ α 1  ;ij ij ij ij ij ij ijM f f f f f f M f f M f f   M f fM M M γθ β γ=
             

(2) 

 

( ){ ( ) ( ) ( ) ( ) ( )}, , , , , , , , , and ,1 2 1 2 1 2 1 2 1 2 2 1 2δ 1  ,ij ij ij ij ij ij ijE f f f f f f E f f E f f   E f fE E E γθ α β γ=
                 

(3) 

 
where M and E represents the mean and entropy (bispectral magnitude of the Ω ) in the ith frame of 
the jth electrode channel position. 
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( ),E pnlog pnn= −∑                                                             (4) 

where                                   
( )
( )

,1 2 , Ω region of  the bispectral magnitude.
,Ω 1 2

B f f
pn

B f f
= =
∑

                       (5) 

Classification of imaginary tasks using MLNN. MLNN are biologically inspired tools used for 
information processing and they are nonlinear in nature [36]. Classification of TEP responses to 
categorize the navigational tasks basically falls on pattern recognition problem. In this analysis, 
generalized IRCC system has been developed using MLNN for Multi-class pattern classification. 
The feature vectors derived from the mean of bispectral magnitude (5600×48 feature vectors) and 
bispectral entropy (5600×48 feature vectors) are processed subsequently and then associated with the 
seven different visual response tasks. Also, the feature vectors are normalized using binary 
normalization methods, where the dataset is recycled between 0.1 to 0.9 and partitioned into training 
and testing sets [37]. The training set has 4480×48 (80 % of master data set) and the testing set has the 
remaining 1120×48 (20 % of master data set) for the classification of the TEP tasks.   

In this work, the MLNN models were organized with 48 input neurons, 25 hidden neurons and 
three neurons in the output layer. As the logistic sigmoid function scales any range of values between 
0.1 and 0.9, in the designed MLNN models, logistic sigmoidal function was used to activate the 
neurons in the hidden and output layer. The Mean Squared Error (MSE) tolerance of 0.1 was used for 
training the neural network. In order to improve the performance rate, the learning rate, momentum 
factor and number of iterations were chosen based on the experimental observations in different trials. 
The learning rate and momentum factor for the models were chosen as 0.1 and 0.8 respectively. 
The generalization capability of the model was validated by performing 10 trials for training and 
testing method. The network models were trained using Levenburg Marquth Model. The MLNN 
model for spectral features were trained with ten trial weights for each subset. On the first subset, the 
network model was trained using 9/10 of the feature set and the classification rate was estimated using 
1/10 subset of the remaining feature set. This process was repeated until all the 2/10 subset are used 
for the validation set [36, 37]. Further, the network training parameters, mean classification rate are 
shown in table 1, 2.  

 
Table 1 

The mean classification performance of the IRCC system using MLNN  
classifier and the mean of bispectral magnitude features 

MLNN Classification results using entropy of bispectral magnitude features 
No. of training 

samples 4480 No. of hidden 
neurons 25 Output 

neurons 3 

Training 
tolerance 0.03 

No. of testing 
samples 1120 Input neurons 48 Testing 

tolerance 0.1 

Trial Training time (sec.) Number of epochs Classification accuracy (%) 
1 1272 159 79.52 
2 1096 137 68.52 
3 1150 144 71.85 
4 1289 161 80.56 
5 1270 159 79.40 
6 1221 153 76.34 
7 1366 161 80.37 
8 1250 156 78.10 
9 1327 166 82.95 
10 1154 144 72.12 

Minimum 1096 137 68.52 
Mean 1240 154 76.97 
Maximum 1366 166 82.95 

 



Информатика. 2020. Т. 17, № 4. С. 92–103                                        99 
 

 

Table 2 
The Mean classification performance of the IRCC system using MLNN  

classifier and bispectral entropy features 
MLNN Classification results using entropy of bispectral magnitude features 

No. of training 
samples 4480 No. of hidden 

neurons 25 
Output 
neurons 3 

Training 
tolerance 0.03 

No. of testing 
samples 1120 Input neurons 48 Testing 

tolerance 0.1 

Trial Training time (sec.) Number of epochs Classification accuracy (%) 
1 1183 148 73.91 
2 1192 149 74.50 
3 1157 145 72.34 
4 1237 155 77.29 
5 1301 163 81.30 
6 1321 165 82.54 
7 1419 167 83.47 
8 1355 169 84.71 
9 1519 211 84.40 
10 1140 142 71.24 

Minimum 1140 142 71.24 
Mean 1282 161 78.57 
Maximum 1519 211 84.71 

 
Results and Discussion. In this paper, the 16-bit digitized signals were filtered to remove the 

artifacts and are categorized into six traditional bands: Delta (δ) 0.1–4 Hz, Theta (θ) 4–8 Hz, Alpha (α) 
8–16 Hz, Beta (β) 16–32 Hz, Gamma 1, γ1 (32–64 Hz) and Gamma 2, γ2 (64–100 Hz). The frequency 
band signals segmented into frames of equal samples and are used to extract the higher order spectra 
also known as polyspectral representations of higher order statistics. Further, to reduce the dimension 
of the bispectrum, Mean of bispectral magnitude and grand mean of the bispectral magnitude features 
are extracted and associated it with one of the TEP tasks. The extracted features are classified using 
MLNN algorithm. The classification performance of the developed models are summarized in table 1, 2 
for statistical features of the B(f1, f2) sequence. The comparison of mean training time, mean number of 
epochs and mean classification accuracy obtained during testing sessions using the statistical features 
are depicted in fig. 3–5. 

 
 

 
 

Fig. 3. Comparison of mean training time using statistical features of cross-correlation coefficients 
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From fig. 3, it is observed that the MLNN model based on the bispectral features has the mean 
training time in the range of 1096 to 1366 sec. using the mean of bispectral magnitude subset of 
testing set and the bispectral entropy feature set has the mean training time in the range of 1140 to 
1519 sec. respectively. It is also observed that the mean training time of 1240 sec. has been obtained 
using the mean of bispectral magnitude features and 1519 sec. has been obtained using bispectral 
entropy features. The mean maximum training time of 1519 sec. has been obtained from bispectral 
entropy features and mean minimum training time of 1096 sec. has been obtained for the mean of the 
bispectral magnitude features. 
 

 

 
 

Fig. 4. Comparison of mean number of epochs using statistical features of cross-correlation coefficients 
 

From fig. 4, it is observed that the MLNN model based on the bispectral features has the mean 
number of epochs in the range of 137 to 166 epochs using the mean of bispectral magnitude subset of 
testing set and the bispectral entropy feature set has the mean number of epochs in the range of 142 to 
211 epochs respectively. It is also observed that the mean number of epochs of 154 epochs has been 
obtained using the mean of bispectral magnitude features and 161 epochs has been obtained using the 
bispectral entropy features. The mean maximum number of epochs of 211 epochs has been obtained 
from bispectral entropy features and the mean minimum number of epochs of 137 epochs has been 
obtained for the mean of bispectral magnitude features. 
 

 

 
 

Fig. 5. Comparison of mean classification accuracy, using statistical features  
of cross-correlation coefficients 
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From fig. 5, it is observed that the MLNN model based on the bispectral features has the mean 
classification accuracy in the range of 68.52 to 82.95 % using the mean of bispectral magnitude subset 
of testing set and the bispectral entropy feature set has the mean classification accuracy in the range of 
71.24 to 84.71 % respectively. It is also observed that the mean classification accuracy of 76.97 % has 
been obtained using the mean of the bispectral magnitude features and 78.57 % has been obtained 
using the bispectral entropy features. The mean max classification accuracy of 84.71 % has been 
obtained from the bispectral entropy features and the mean minimum classification accuracy of 
68.52 % has been obtained for the mean of bispectral magnitude features. 

Conclusion. The regards to the objective of this research work, a simple thought controlled 
intelligent robot chair with communication aid has been developed using statistical features of the 
bispectrum estimation and MLNN algorithm. The proposed system uses the TEP response task signals 
recorded from ten subjects and are segmented into six frequency band has been chosen to study the 
third order Fourier coefficient of the TEP tasks. Then, statistical features such as the mean of bispectral 
magnitude using the non-redundant region (Ω) = 0 ≤ 𝑓𝑓2 ≤ 𝑓𝑓1 ≤ (𝑓𝑓1 + 𝑓𝑓2) ≤ 1 and grand mean of the 
bispectral magnitude using the bispectrum region of computation are extracted. The extracted feature 
vectors based on third order higher order spectra features (mean and grand mean of bispectral 
magnitude) are distinguished easily for the different classes of TEP tasks. The feature vectors are 
associated with the corresponding output targets and are classified using MLNN classifiers.  

The test results obtained from this analysis has a less misclassification error of 11.60 % (130/1120) 
samples during the testing stage. The obtained results open many possible areas of applications and 
improvements in thought controlled robot chair navigation and communication system for 
differentially enabled communities. In the future analysis, non-linear feature extraction algorithms, 
classification algorithms and online training sessions so as to be used to improve the recognition 
accuracy of the IRCC system. Further, it is propitious to explore useful characteristics of brain wave 
signals based on effective feature extraction and classification methods. 
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