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Abstract. In recent years, electroencephalography-based navigation and communication systems for differentially
enabled communities have been progressively receiving more attention. To provide a navigation system with
a communication aid, a customized protocol using thought evoked potentials has been proposed in this research
work to aid the differentially enabled communities. This study presents the higher order spectra based features to
categorize seven basic tasks that include Forward, Left, Right, Yes, NO, Help and Relax; that can be used for
navigating a robot chair and also for communications using an oddball paradigm. The proposed system records
the eight-channel wireless electroencephalography signal from ten subjects while the subject was perceiving
seven different tasks. The recorded brain wave signals are pre-processed to remove the interference waveforms
and segmented into six frequency band signals, i. e. Delta, Theta, Alpha, Beta, Gamma 1-1 and Gamma 2.
The frequency band signals are segmented into frame samples of equal length and are used to extract the
features using bispectrum estimation. Further, statistical features such as the average value of bispectral
magnitude and entropy using the bispectrum field are extracted and formed as a feature set. The extracted
feature sets are tenfold cross validated using multilayer neural network classifier. From the results, it is
observed that the entropy of bispectral magnitude feature based classifier model has the maximum classification
accuracy of 84.71 % and the value of the bispectral magnitude feature based classifier model has the minimum
classification accuracy of 68.52 %.
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AHHoTanus. B mocnegnue roapl Bce OoJble BHUMAaHHS YAENACTCS HABUTAIIMOHHBIM M KOMMYHUKAIIMOHHBIM
CHCTEMaM Ha OCHOBE 3JIEKTPO3HIIE(haIorpaMMbl TOJIOBHOTO MO3Ta Ul COOOIIECTB ¢ Pa3HBIMHU BO3MOXKHOCTSIMHU.
Jlns mpepocTaBieHUs HAaBUTAIIMOHHOW CHCTEME BCIIOMOTATEIbHBIX CPEACTB CBSA3M B PabOTe NPEIUIOKEH Hac-
TpauBaeMblil IPOTOKOJI, MCIIOIB3YIOIUI BBI3BAaHHBIE MBICJIUTEIbHBIE MOTEHIMANbBI, YTOOBI IIOMOYb COOOIIECT-
BaM C pa3HBIMH BO3MOXHOCTSIMH. [IpescraBiieHbl (GyHKIMH, OCHOBAaHHBIE HA CHEKTpax 0oJiee BHICOKOTO MOpPSI-
Ka, Ui Kiaccu(UKalMU CEMH OCHOBHBIX 3ajad, Takux kKak Bmepen, Bieso, Bmparo, /la, HET, I[Tomoms
u PaccnabiieHne, KOTOpbIE MOYKHO HCIIOJB30BaTh ISl YIPAaBICHHS KPECIOM-POOOTOM, a TakxkKe Ui CBS3H
C UCTIOJIb30BaHNEM HEOOBIYHOW MapaaurMbl. [Ipeiyiaraemasi cucrema 3amuchiBaeT BOCBMHKaHAIBHBIH Oecrpo-
BOJHOW CHTHAJ 3JIEKTpodHIedanorpadu OT ASCATH CYOBEKTOB, B TO BpeMs KaK CyOBEKT BOCHPHHUMAI CEMb
pa3IMYHbIX 3aaad. 3aliCcaHHbIC CHUTHAJIBl MO3TOBBIX BOJIH IPEIBAapUTEIBHO 00padaThIBAIOTCSA OIS yAAICHUS
MHTEP(EPEHIINOHHBIX BOJIH M CETMEHTHPYIOTCS Ha CHUTHAJIBI IIECTH YAaCTOTHBIX JHAIa30HOB: JIENbTA, TETa,
anbda, 6era, Tamma 1-1 u ramma 2. CHrHaJBI IOJIOCHI YacCTOT CETMEHTHPYIOTCS Ha BBIOOPKH KaJpOB PaBHOU
JUIMHBl W MCTIONB3YIOTCS JUIS HM3BJICUCHMS ITPH3HAKOB C MCHOJIB30BaHWEM OLEHKHM Oncrektpa. Kpome Toro,
CTaTHCTHYECKNE XAPAKTEPUCTHKHU, TAKHE KaK CpeJHEee 3HauCHHEe OMCIEKTPaIbHOW BEITMYUHBI M SHTPOIHUS C HC-
NOJIb30BaHUEM 00JIaCTH OWCIIEKTpa, M3BJIEKAOTCS U (OPMUPYIOTCS Kak HabOp XapaKTEepHUCTHK. V3BiedeHHbIe
HaOOpbl (QYHKIMH TPOXOAAT AECATUKPATHYIO IEPEKPECTHYIO MPOBEPKY C HCIOJIb30BaHHMEM KilaccU(HUKaTtopa
MHOTOCJIOHOW HEeHpOHHOW ceTH. Pe3ynpTaThl MOKa3ajid, YTO JHTPOMHS MOJENU KiIacCH(pUKATOpa HA OCHOBE
XapaKTepUCTHK OHMCIEKTPaIbHON BETMUMHBI HMEeT MaKCHUMAIbHYIO TOYHOCTh Kiaccupukanuu 84,71 %, a cpen-
Hee 3Ha4YeHHEe MOJENM KJIacCH(HUKAaTopa Ha OCHOBE XapaKTEPUCTHK OWMCIEKTPaJbHON BEIMYMHBI — MHUHH-
MaJbHYIO TOYHOCTH Kiaccudukanuu 68,52 %.

KioueBble c€10Ba: HHTEIICKTYyalbHOE KpPECIO-pOOOT C KOMMYHHKAILMOHHBIMH CPEACTBAMH, BBHI3BAHHBIC
MBICITUTENbHBIC MOTEHINANBI, OlleHKa Gucrektpa (B (f1, f2)), MHOrOCHOHAS HEHPOHHAS CeTh

Jlist uaTHpoBaHus. MHTEIIEKTyalbHOE KPEecao-poOOT €O BCIOMOTATENLHBIMU CPEJCTBAMH CBSI3H C HCIIOJNb-
3oBanneM oTkiMkoB TEP u xapakrepucTHK auana3oHa criekrpa 0ojiee Beicokoro nopsiaka / C. K. Harapamk [u ap.] //
Hudopmaruka. — 2020. — T. 17, Ne 4. — C. 92-103. https://doi.org/10.37661/1816-0301-2020-17-4-92-103

Introduction. Movement and communication are the basic needs of human beings in their daily
life and to live a meaningful life with interpersonal interactions [1]. Neuromuscular Disorder patients,
such as Amyotrophic Lateral Sclerosis, neurodegenerative disease, muscular dystrophy, high cervical
injuries or loss of the ability to speak (due to an accident) and Brain Stem Stroke have their walking
abnormalities due to postural Instability and difficulty in communication with others due to loss of
muscle control and speech [2—4]. Over the last decade, there has been an increasing attention on these
patients to provide a navigation system and communication aid to enable them to lead a normal life
[5-9]. In recent years, variety of BMI applications have arisen, Encouraged by new understanding of
the non-invasive acquisition of human perception using powerful EEG amplifiers [10, 11], e. g. for
cursor movement, acupuncture in pain relief [12], Neuro-prosthetic arm [13] and whole body
movement [14], driver sleepiness detection [15], smart-living environmental control [16]. Currently,
this research has been directed towards wheelchair navigation control and recognition of unspoken
speech utterances without voluntary muscle activity [17-20].
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Recently, several studies have examined thought evoked potential (TEP) based design of robotic
wheelchair control using human thoughts [21], and communication systems using P300 speller and
oddball paradigms [22]. Yet, the data acquisition protocols have shown a vital role in redefining the
claimed action to command a navigation system or a communication system. The research work
proposed by Kaufmann et al [17], involves positioning of four tactile stimulators and delivers
navigation by concentrating their considerations on the desired tactile stimulus in an oddball paradigm
to control the wheelchair. The results were validated through the participants navigating a virtual
wheelchair. Theresa M. Vaughan [23], Frank H. Guenther [19] and Anne Porbadnigk [20] have
developed several alternative communication systems using the recent developments in personal
computers and new prosthetic methods to provide communication and control channels to individuals
with difficulties in communication. Despite, none of the systems have produced an expanded
utilization of the BMI technology to facilitate both navigation and communication through a
customized brain activity recording protocol. Thus, in this study it is proposed to develop a
customized thought controlled intelligent robot chair with communication aid (IRCC), as an initial
step towards the possibility of navigation and speech production using a simple thought response
based protocol (fig. 1). Depicts the block diagram of the proposed customized classification system for
robot chair control along with a communication aid.
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Fig. 1. Block diagram of the proposed thought controlled IRCC

The motivation towards this research is to establish a simple robot chair along with a
communication aid, that can be used by an differentially enabled person, to control a wheel chair and
to communicate their needs with others using TEP’s. A simple data acquisition protocol has been
proposed to develop the thought controlled IRCC; the tasks (Forward, Left, Right, Yes, No and Relax)
were initially simulated and the subjects were requested to imagine during the data acquisition
process. Further, the subjects were taught to pronounce the word loudly for the ‘Help’ task. The EEG
signals are recorded for 12 sec. for each trial per task and are segmented into 10 sec. during the
pre-processing stage for uniformity. In the pre-processing, the recorded brain wave signals were
band-passed filtered in the frequency range of 0.5 to 100 Hz and segmented into six frequency bands
Delta(s), theta(p), alpha(a), beta (), Gamma 1(y1)and Gamma 2 (y2). Thus, frequency band signals

are segmented into frame segments (512 samples) and used to extract the features using higher order
spectra (HOS) technique. The general motivation behind the use of bispectrum estimation is to detect
and characterize the nonlinear properties of the TEP tasks, and they are potentially better to estimate
the deviations from Gaussianness (normality) [24—-26]. Thus in this study, the third order statistics
bispectrum based feature extraction method has been implemented to extract the features from each
frame of frequency band signals over each electrode position and the features such as the Mean of
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bispectral magnitude (M) and the bispectral entropy features (E) were extracted. The non-linear
features were extracted and associated with the corresponding TEP tasks. Then, the extracted feature
sets were modeled using a supervised learning-multilayer neural network (MLNN) classifier and the
classification performance was validated. The research methodology and the developed model results
are explained in the subsequent sections of this paper.

Intelligent robot chair with communication database. The experimental setup and data
acquisition procedures were implemented in the research lab at the School of Mechatronic
Engineering, University Malaysia Perlis. The proposed study has been registered and approved from
National Medical Research Registration (NMRR ID: NMRR-13-51-14570) and obtained Ethical
approval from The Medical Research & Ethics Committee (MREC), Ministry of Health Malaysia.
(Ref:(7)dIm.KKM/NIHSEC/800-2/2/2J1d2P13-179). This section elucidates some fundamental
methods on the experimental setup which includes the wireless bio-amplifier setup and the placement
of electrode channels for brain wave recording. Further, Suitable task selection, the data collection
procedure and the formation of IRCC database were also presented. These processes are essential for
the classification of thought evoked potentials to command an intelligent robot chair with
communication aid.

Experimental setup and data acquisition tasks. In the experimental setup, a standard bio-signal
acquisition system developed by ‘g-mobilab+” 8-channel EEG data acquisition system was used to
record the brain wave signals [27, 28]. The system consists of an electrode cap with nine differential
screwable electrodes, bio-signal amplifier and wireless data acquisition using MATLAB® interactive
programming environment. In this study, it is proposed to develop a BMI system which can be used to
navigate the wheel chair and communicate with others using an oddball paradigm; through brain wave
EEG signals when functional communications are disabled [29]. Thus, in the data acquisition protocol,
three primary tasks that address the navigation of the robot chair and to select the isolated words in an
oddball paradigm, such as Left, Forward and Right hand movement control are included. Further,
three additional tasks have been included to use in emergency circumstances and to address the basic
needs of a human being, they are Help, Yes, No tasks. Relax (normal) has been used as the reference
signal in this experiment [30]. A semi-sound controlled room was used for the acquisition where the
subjects were remained in a pleasant circumstance. The subject carried out seven different tasks.
The EEG signals are recorded while the subject was settled comfortably and remained in totally static
posture. No overt actions were made during the 12.0 sec. of the data acquisition process (fig. 2)
depicts the tasks that were implemented using the TEP responses to command an IRCC.

Left Hand Movement Forward Movement Right Hand Movement
Subjects imagine pushing the joystick Subjects imagine pushing the joystick Subjects imagine pushing the joystick
using the left hand using the both hands using the right hand

Yes
Subjects imagine moving the head
up and down

No
Subjects imagine moving the head
left to right

©

o

Help
Subjects imagine pronouncing the
word help

Relax

Fig. 2. Preliminary representation of the tasks (10.0 sec.) for subject to conduct
the thought response data acquisition process
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The system records the motor imaginary signal from the eight electrode positions such as Temporal
(T3, T4), central (C3, C4), parietal (P3, P4), and occipital (O1, O2) while the subjects were
performing the seven thought response tasks. In the electrode placement system, reference recording
schemes were used. The electrodes are placed on T3, T4, C3, C4, P3, P4, O1 and O2 position with one
common electrode on the left ear lobe of the body where potential remains fairly constant [31, 32].
The proposed IRCC system captures the brain wave patterns in order to identify the rhythmic activity
for the seven different thoughts of an individual. Thus, during data collection, the EEG signals were
recorded at a sampling rate of 256 Hz from a grid of 8 Ag/AgCl scalp electrodes which were placed on
the scalp according to the international 10-20 lead system [31, 32]. The electrodes are placed on the
scalp of the selected locations and tested for level of impedance using g-tec impedance checker.
The impedance level was also tested after completing and maintained below 10 KQ.

TEP data acquisition and IRCC database. In the data acquisition process, ten healthy
BMI-naive volunteers (eight male, aged 21-30 years and two female, aged 24 vyears) were
participated. During the data acquisition of each task, the subjects were requested to view the
simulation of the specific task on the LCD monitor as depicted in fig. 2(1) to fig. 2(7) until recording
all the trials. The simulation depicts the movement of a joystick moving left, forward and right
movement for the left, forward and right directions respectively. For the additional tasks like ‘Yes’
and ‘No’, the simulation presents a volunteer performing head movements up-down and left-right
movements and for ‘Help’ task, the subject was requested to pronounce imaginarily the word ‘help’
respectively. Then, the subject was requested to imagine the tasks as simulated on the monitor. When,
the subject performs a specified task, the EEG signals emanated were recorded for 12.0 sec. from
Parietal (P3 and P4), temporal (T3, T4), central (C3, C4), occipital (O1, 02), positions. Ground
electrode and reference electrodes are placed in the Fpz position and left earlobe locations in order to
make individual’s thought evoked tasks, recording comparable over time and to another individual’s
record, International 10-20 system was used for the electrode placement [28, 31, 33].

The procedure of thought stimulus took the following format:

1. A simulation was presented on the LCD monitor (Left task) for 10 sec.

2. A 1 KHz tone (beep) sounded, the monitor displays the simulation of a moving joystick in left
direction.

3. Then the monitor is turned off, the subject was given a time break of 5 sec. and requested to
imagine the respective task.

4. The bio-signal recording was carried out for 12 sec. while the subjects performing the task.

5. The subject was given a time break of approximately two minutes after completing each trial.

6. The simulation continued until ten trials were performed.

7. Similarly, the next task simulation in the procedure was presented.

*Note that eyes remain open in all the mental tasks.

The recorded EEG signals are contaminated with unknown noise component lying within a
50-60 Hz frequency range, which are due to power-line noises. A simple first order IIR notch filter
was designed for removing the Power line noise from the recorded EEG signals. The center frequency
of the filter, FO was chosen to be at exactly 50 Hz and the bandwidth, AF = 4 Hz. Then, the signals are
converted into digital signals using a sampling frequency of 256 Hz simultaneously, the acquisition
process was repeated 10 times for each task and the subject was requested to take a rest for ten
minutes after each task. Similarly, this procedure was repeated for ten subjects and the recorded
signals were combined and a database was formulated. The database was named as IRCC database.
The IRCC database consists of data pertaining to 10 different subjects (for 7 tasks and each was
performed for 10 trials). The collected database was validated using analysis of variance (ANNOVA)
technique and the significance level of 4.29x10*<p value was obtained when validated on a task basis.

Feature extraction using bispectrum estimation

Preprocessing. In the preprocessing stage, the 16-bit digitized signals with 256 Hz sampling
frequency were trimmed to segregate the intermediate 10 sec. signals from 12 sec. signal. The trimmed
raw signals are filtered to remove the artifacts and EMG’s below 0.5 Hz and above 100 Hz using
6" order band pass filters [34]. The segmented brain waves are categorized into six traditional
bands: Delta (8) 0.1-4 Hz, Theta (8) 4-8 Hz, Alpha (o) 8-16 Hz, Beta (B) 16-32 Hz, Gamma 1,
v1 (32-64 Hz) and Gamma 2, y2 (64-100 Hz).
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Thus, each frequency band signals are segmented into frames such that a frame length of 2 sec.
having 512 samples per frame along with an overlap of 1s (m = 256 samples). Thus, the first frame
consists of n = 512 samples. The second frame was initiated after a lap of m-1 samples such that the
second frame overlaps with the n-m samples of the first frame. This procedure was repeated until all
the frequency band signals were counted. Then, each frame is considered as an input to extract the
higher order spectra also known as polyspectral representations of higher order statistics.

Bispectrum estimation. In various BMI applications, EEG signals have been analyzed using power
spectra in several distinctive frequency bands. The power spectrum estimation provides the good
statistical description of signals with an arbitrary distribution function. Moreover, power spectrum
representation gives us the full canonical description in the case of stationary signals. In case of non-
gaussianity or non-linear mechanisms, Higher order spectra can be used to determine the higher order
moments or complaints which provide additional information on the phase characteristics and realistic
information of the EEG signal [24]. In this paper, bispectrum B(f1, f2) analysis has been employed to
study the brain wave patterns of the visual stimuli. The bispectrum estimation is particularly the third-
order statistics of a signal, which represents the Fourier transform of the third order correlation with
highly interdependent frequency components [24, 35]. The mathematical representation of the
bispectrum estimation is expressed in equation

B(fi.f2) = EIX(fOX(£)X"(f1 + f2)], 1)

where X(f) is the DFT at frequency samples x(nT), using the FFT algorithm. The frequency (f) may be
normalized by the Nyquist frequency to be between 0 and 1. X*(f; + f,) denotes complex conjugate
and therefore the bispectrum obtained using equation (1) is a complex valued function which
represents the product of three Fourier coefficients. In this feature extraction process, the non-
redundant region or the positive bispectrum sequence () =0<f, < f1 < (f; + f2) <1 has been
used to extract the Mean of bispectral magnitude features and the whole bispectrum region of
computation has been used to extract the and grand mean of the bispectral magnitude features
respectively.

To extract the B(f;,f,) sequence in frequency domain, the EEG signal acquired from each channel
were used to extract the six frequency band signals, namely Delta (8), Theta (0), Alpha (o), Beta (),
Gamma 1 (yl) and Gamma 2 (y2). Each frequency band signals were segmented into frames such that

each frame has 512 samples. The positive fourier coefficients of B(f;,f,) was estimated in the i" frame

of each channel. Thus the bispectrum sequence for B(f;, fz)éi was obtained from ¢ band, where i and j
are the frame numbers and an electrode channel number respectively. Similarly, the bispectrum

sequence for B(f1.f2)p;s B(f1.f2) i BU1:f2)pir B(fi.f2)y1 @nd B(f1,£2) 1, Were also computed.

From the estimated sequences, two statistical features, namely, Mean of bispectral magnitude (M)
and bispectral entropy (E) features are computed to characterize the distribution of bispectrum sequence
as well as to minimize the dimension of the feature vector as shown in equation (2), (3). Therefore, for
eight channels we have 48 (6x8) features per frame. The statistical features are extracted from all the
trials and are used to form the feature set. Simultaneously, the features are derived from each task and
the corresponding feature set consisting of 5600 samples are formulated and used to train and test the
classifier models

M ={Mg (.1). Mg (7). 'V'(if (% fz)"\";isj (% fz)"\"a( g, T, )and M;jz( f fz)}; @)

E! Z{Egi;j (41) &9 (1 52) B (0 1) B (1 0p) E) (10 )ana el (1, fz)}’ ®)

where M and E represents the mean and entropy (bispectral magnitude of the Q) in the i" frame of
the j™ electrode channel position.
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E =-Xn pnlog (pn), (4)

‘B(filfz)‘

where pn= , Q =region of the bispectral magnitude. (5)
ZQ‘B( . fz)‘

Classification of imaginary tasks using MLNN. MLNN are biologically inspired tools used for
information processing and they are nonlinear in nature [36]. Classification of TEP responses to
categorize the navigational tasks basically falls on pattern recognition problem. In this analysis,
generalized IRCC system has been developed using MLNN for Multi-class pattern classification.
The feature vectors derived from the mean of bispectral magnitude (5600x48 feature vectors) and
bispectral entropy (5600x48 feature vectors) are processed subsequently and then associated with the
seven different visual response tasks. Also, the feature vectors are normalized using binary
normalization methods, where the dataset is recycled between 0.1 to 0.9 and partitioned into training
and testing sets [37]. The training set has 4480x48 (80 % of master data set) and the testing set has the
remaining 1120x48 (20 % of master data set) for the classification of the TEP tasks.

In this work, the MLNN models were organized with 48 input neurons, 25 hidden neurons and
three neurons in the output layer. As the logistic sigmoid function scales any range of values between
0.1 and 0.9, in the designed MLNN models, logistic sigmoidal function was used to activate the
neurons in the hidden and output layer. The Mean Squared Error (MSE) tolerance of 0.1 was used for
training the neural network. In order to improve the performance rate, the learning rate, momentum
factor and number of iterations were chosen based on the experimental observations in different trials.
The learning rate and momentum factor for the models were chosen as 0.1 and 0.8 respectively.
The generalization capability of the model was validated by performing 10 trials for training and
testing method. The network models were trained using Levenburg Marquth Model. The MLNN
model for spectral features were trained with ten trial weights for each subset. On the first subset, the
network model was trained using 9/10 of the feature set and the classification rate was estimated using
1/10 subset of the remaining feature set. This process was repeated until all the 2/10 subset are used
for the validation set [36, 37]. Further, the network training parameters, mean classification rate are
shown in table 1, 2.

Table 1
The mean classification performance of the IRCC system using MLNN
classifier and the mean of bispectral magnitude features
MLNN Classification results using entropy of bispectral magnitude features
e [ 4400 | N [ 25 | o |, | s | O
No. of testing 1120 | Input neurons | 48 neurons Testing 01
samples tolerance
Trial Training time (sec.) Number of epochs | Classification accuracy (%)

1 1272 159 79.52

2 1096 137 68.52

3 1150 144 71.85

4 1289 161 80.56

5 1270 159 79.40

6 1221 153 76.34

7 161 80.37

8 1250 156 78.10

9 1327

10 1154 144 72.12
Minimum 1096 137 68.52
Mean 1240 154 76.97
Maximum 1366 166 82.95
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Table 2
The Mean classification performance of the IRCC system using MLNN
classifier and bispectral entropy features
MLNN Classification results using entropy of bispectral magnitude features
Vom0 [ aaso | Voot [ s | || e | o
No. of testing 1120 Input neurons 48 neurons ’ Testing 0.1
samples tolerance
Trial Training time (sec.) Number of epochs | Classification accuracy (%)

1 1183 148 73.91
2 1192 149 74.50
3 1157 145 72.34
4 1237 155 77.29
5 1301 163 81.30
6 1321 165 82.54
7 1419 167 83.47

8 1355 169 —
9 84.40
10 1140 142 71.24
Minimum 1140 142 71.24
Mean 1282 161 78.57
Maximum 1519 211 84.71

Results and Discussion. In this paper, the 16-bit digitized signals were filtered to remove the
artifacts and are categorized into six traditional bands: Delta (5) 0.1-4 Hz, Theta (6) 4-8 Hz, Alpha (o)
8-16 Hz, Beta (B) 16-32 Hz, Gamma 1, y1 (32-64 Hz) and Gamma 2, y2 (64-100 Hz). The frequency
band signals segmented into frames of equal samples and are used to extract the higher order spectra
also known as polyspectral representations of higher order statistics. Further, to reduce the dimension
of the bispectrum, Mean of bispectral magnitude and grand mean of the bispectral magnitude features
are extracted and associated it with one of the TEP tasks. The extracted features are classified using
MLNN algorithm. The classification performance of the developed models are summarized in table 1, 2
for statistical features of the B(f1, f2) sequence. The comparison of mean training time, mean number of
epochs and mean classification accuracy obtained during testing sessions using the statistical features

are depicted in fig. 3-5.
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Fig. 3. Comparison of mean training time using statistical features of cross-correlation coefficients
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From fig. 3, it is observed that the MLNN model based on the bispectral features has the mean
training time in the range of 1096 to 1366 sec. using the mean of bispectral magnitude subset of
testing set and the bispectral entropy feature set has the mean training time in the range of 1140 to
1519 sec. respectively. It is also observed that the mean training time of 1240 sec. has been obtained
using the mean of bispectral magnitude features and 1519 sec. has been obtained using bispectral
entropy features. The mean maximum training time of 1519 sec. has been obtained from bispectral
entropy features and mean minimum training time of 1096 sec. has been obtained for the mean of the
bispectral magnitude features.

Comparison of number of epochs
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Fig. 4. Comparison of mean number of epochs using statistical features of cross-correlation coefficients

From fig. 4, it is observed that the MLNN model based on the bispectral features has the mean
number of epochs in the range of 137 to 166 epochs using the mean of bispectral magnitude subset of
testing set and the bispectral entropy feature set has the mean number of epochs in the range of 142 to
211 epochs respectively. It is also observed that the mean number of epochs of 154 epochs has been
obtained using the mean of bispectral magnitude features and 161 epochs has been obtained using the
bispectral entropy features. The mean maximum number of epochs of 211 epochs has been obtained
from bispectral entropy features and the mean minimum number of epochs of 137 epochs has been
obtained for the mean of bispectral magnitude features.

Comparison of Classification accuracy (%)

Classification accuracy (%)

Mean of Bispectral Magnitude Bispectral entropy
Minimum 68.52 7124
® Mean 76.97 78.57
o Maximum 82.95 84.71

Fig. 5. Comparison of mean classification accuracy, using statistical features
of cross-correlation coefficients
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From fig. 5, it is observed that the MLNN model based on the bispectral features has the mean
classification accuracy in the range of 68.52 to 82.95 % using the mean of bispectral magnitude subset
of testing set and the bispectral entropy feature set has the mean classification accuracy in the range of
71.24 to 84.71 % respectively. It is also observed that the mean classification accuracy of 76.97 % has
been obtained using the mean of the bispectral magnitude features and 78.57 % has been obtained
using the bispectral entropy features. The mean max classification accuracy of 84.71 % has been
obtained from the bispectral entropy features and the mean minimum classification accuracy of
68.52 % has been obtained for the mean of bispectral magnitude features.

Conclusion. The regards to the objective of this research work, a simple thought controlled
intelligent robot chair with communication aid has been developed using statistical features of the
bispectrum estimation and MLNN algorithm. The proposed system uses the TEP response task signals
recorded from ten subjects and are segmented into six frequency band has been chosen to study the
third order Fourier coefficient of the TEP tasks. Then, statistical features such as the mean of bispectral
magnitude using the non-redundant region () = 0 < f, < f1 < (f; + f,) < 1 and grand mean of the
bispectral magnitude using the bispectrum region of computation are extracted. The extracted feature
vectors based on third order higher order spectra features (mean and grand mean of bispectral
magnitude) are distinguished easily for the different classes of TEP tasks. The feature vectors are
associated with the corresponding output targets and are classified using MLNN classifiers.

The test results obtained from this analysis has a less misclassification error of 11.60 % (130/1120)
samples during the testing stage. The obtained results open many possible areas of applications and
improvements in thought controlled robot chair navigation and communication system for
differentially enabled communities. In the future analysis, non-linear feature extraction algorithms,
classification algorithms and online training sessions so as to be used to improve the recognition
accuracy of the IRCC system. Further, it is propitious to explore useful characteristics of brain wave
signals based on effective feature extraction and classification methods.
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HNndopmanust 00 aBTopax

Loxmop Camuc Kymap Hamapaoxc, pouent (xmacc 3),
(bakynbTeT MEXaTpOHHKH MeXIyHapOAHOTO YHUBEPCH-
tera AMA, baxpeitn. Ilomyunn B oGmact MexaTpoH-
HOM MH)KEHEPUH JOKTOPCKYIO CTENEeHb M 3BaHME MAarucT-
paHayk B YHuBepcutere Mamaiisun [lepmic, Gakarnas-
pa TEXHUYECKUX HAayK B TEXHOJIOIMYECKOM KOJUIEHXKE
mM. K. C. PanracBamu, Uaust.

E-mail: satheesjuly4@gmail.com

Ipogeccop, ooxmop Ilayapaoxc Mypyeeca I[lanousn,
qupektop Texnonormueckoro wuncturyta Ilpu Pawma-
kpumHbl, Koumbaryp, Tamunnamy, Unmus. Vmeer nok-
TOPCKYIO CTENeHb B 0OJIaCTH KOMITBIOTEPHBIX HayK,
32-nerHnii ombIT mpenoxasBanus u Oonee 10 mer wmccie-
JIOBAaTEIbCKOTO W PYKOBOJAIIETO OIBITA B  00JACTH
HEHpPOHHBIX CETEH.

Ipogheccop, ooxmop Caszanu 6un Aaxob, mnpodeccop
Kadeapsl MEKTPOTEXHUKH Mama3uiickoro HCIaHCKOro
uHCTUTYTa YHuBepcutera Kyama-Jlymmyp, a Takke BO3-
TJIABISIET MCCIIEIOBATEIbCKHI KIacTep MHTEIUIEKTYaIbHBIX
ABTOMOOWJIBHBIX CHCTEM, 3aHUMAIoIuiics 00paboTKoN
CHTHAJIOB, IOBEACHHUEM BOAUTEIICH, YIIPABICHHEM SHEPro-
notpebnenuem. I[lomydmn cremeHp OakanaBpa >IEKTPO-
TEXHUKH B YHuBepcutere Manaiizuu Ilepiauc, a 3atem
CTeNeHb Markcrpa B O0NAacTM CHUCTEMHOH HH)KCHEPHU
B YHuBepcurere Cyppest W JOKTOpa HayK B 00J7acTu
TeXHUKU ympasnenus B Yuusepcurere Lleddunma, Coe-
muHeHHoe KoponeBerso. IlpucyskneHn cratyc IUIUIOMH-
poBaHHOrO umIXKeHepa VmkenepHsiM coBerom Coenn-
HenHoro KopomnerctBa B 2005 1., sBisiercst wieHom |ET
(BenmuxoGpuranmus).

Ipogpeccop, ooxmop A60yn Xamuo Aoom, mpodeccop
nporpaMmbl MexatpoHHOH mmxeHepun (RK24) B Ilkone
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